Suppose $I \neq \emptyset $. Prove that for any indexed family of sets {${A_i|i\in I}$} and any set $B$, $(\cap_{i\in I}A_i)$ x $B$ = $\cap_{i\in I}(A_i$ x $B)$. Where in the proof does the assuption that $I \neq \emptyset $ get used?
$\rightarrow$
$(\cap_{i\in I}A_i)$ x $B$ =
$x \in \cap_{i\in I}Ai$ $\land y\in B$ =
$\forall_{i\in I}(x\in A_i) \land y \in B$ =
$\forall_{i\in I}(x\in A_i) \land \forall_{i\in I}(y\in B)= $
$\cap_{i\in I}(A_i$x$B)$
$\leftarrow$
similar.
Where in the proof should I use $I \neq \emptyset $?