According to euler's formula \begin{equation} e^{i\pi}=-1 \tag{1} \label{1} \end{equation}
\begin{equation} e^{-i\pi}=-1 \tag{2} \end{equation}
Comparing $(1)$ and $(2)$, we get
$$ e^{i\pi}=e^{-i\pi} $$
Comparing the exponents on both sides, $$i\pi=-i\pi$$ Simplifying yields $$i=-i$$ Is this correct? If not, what is the mistake?