A problem I solved previously I get
$$\frac{\sin(n\theta)}{\sin(\theta)} = 2^{n-1}\prod_{k=1}^{n-1}\bigg(\cos(\theta)-\cos{\bigg(\frac{k\pi}{n}}\bigg)\bigg)$$
So considering $z^{4n+2} = 1$ leads to
$$\frac{\sin((2n+1)\theta)}{\sin(\theta)} = 2^{2n}\prod_{k=1}^{2n}\bigg(\cos(\theta)-\cos\bigg(\frac{k\pi}{2n+1}\bigg)\bigg)......................(1)$$
Now
$$\cos\bigg(\frac{2n\pi}{2n+1}\bigg) = \cos\bigg(\pi-\frac{\pi}{2n+1}\bigg) =-\cos\bigg(\frac{\pi}{2n+1}\bigg)$$
$$\cos\bigg(\frac{(2n-1)\pi}{2n+1}\bigg) = \cos\bigg(\pi-\frac{2\pi}{2n+1}\bigg) =-\cos\bigg(\frac{2\pi}{2n+1}\bigg)$$
$$...........................................................$$
$$\cos\bigg(\frac{(n+1)\pi}{2n+1}\bigg) = \cos\bigg(\pi-\frac{n\pi}{2n+1}\bigg) =-\cos\bigg(\frac{n\pi}{2n+1}\bigg)$$
multiplying terms $k = 1$ with $k = 2n, k =2$ with $k = 2n-1\dots k = n$ with $k = n+1$ terms, from$......(1)$ I get
$$\frac{\sin((2n+1)\theta)}{\sin(\theta)} = 2^{2n}\cdot\bigg(\cos(\theta)+\cos\bigg(\frac{\pi}{2n+1}\bigg)\bigg)\cdot \bigg(\cos(\theta)-\cos\bigg(\frac{\pi}{2n+1}\bigg)\bigg)\hspace{82pt}\cdot\bigg(\cos(\theta)+\cos\bigg(\frac{2\pi}{2n+1}\bigg)\bigg)\cdot\bigg(\cos(\theta)-\cos\bigg(\frac{2\pi}{2n+1}\bigg)\bigg)........\hspace{56pt}\bigg(\cos(\theta)+\cos\bigg(\frac{n\pi}{2n+1}\bigg)\bigg)\cdot\bigg(\cos(\theta)-\cos\bigg(\frac{n\pi}{2n+1}\bigg)\bigg)$$
$$ \hspace{35pt}= 2^{2n}\prod_{k = 1}^{n} \bigg(\cos^{2}(\theta)-\cos^{2}\bigg(\frac{k\pi}{2n+1}\bigg)\bigg).............(2)$$
How can I prove $$\frac{\sin((2n+1)\theta)}{\sin(\theta)} = (2n+1)\prod_{k = 1}^{n}\bigg(1-\frac{\sin^2(\theta)}{\sin^2\big(\frac{k\pi}{2n+1}\big)}\bigg)$$ from my calculation? Is my way of approaching this problem is ok or not? If it isn't give me one or a few hints.