By calling upon the roots of unity, it can be proved that for $n\in\mathbb Z^+$, $$\prod_{k=1}^{n-1} \sin\frac{k\pi}{2n}= \frac{\sqrt n}{2^{n-1}} $$ (see, for example, this.)
Using the infinite product representation for $\sin x$, the LHS becomes $$\prod_{k=1}^n \frac{k\pi}{2n}\prod_{m=1}^{\infty}\left( 1-\frac{k^2}{4m^2n^2}\right)\\ = n!\left(\frac{\pi}{2n} \right)^n \prod_{m=1}^{\infty}\prod_{k=1}^n \frac{(2mn-k)(2mn+k)}{4m^2n^2}\\ = n!\left(\frac{\pi}{2n}\right)^n \prod_{m=1}^{\infty}\frac{\Gamma(2mn+n+1)}{(2mn)^{2n+1}\Gamma(2mn-n)} $$ and therefore
$$ \prod_{m=1}^{\infty}\frac{\Gamma(2mx+x+1)}{(2mx)^{2x+1}\Gamma(2mx-x)}= \frac{2x^{x+\frac 12}}{\pi^x \ \Gamma(x+1)} $$ for $x\in\mathbb Z^+$. Naturally, I wondered whether this result also holds for other $x\notin\mathbb Z^+$, and indeed on checking I saw that this is true for $x=\frac 12, \frac 32, \frac 13$ or even $x=\pi$, so I suspect that it holds atleast for all $x\gt 0$. How can this be proven/disproven?