2

Define:

$$f(x)=1+\frac{\ln^{c}\left(ax\right)-\ln^{c}\left(a\right)}{\ln^{c}\left(2a\right)-\ln^{c}\left(a\right)}-x$$

where $1< x$ and $a>2$. Assume further that the parameter $c$ is chosen so that $f'(2)=0$. The derivation of $c$ involves the Lambert's function.

Claim : $$f(x)\leq 0$$

My attempt:

We have :

$$f'(x)=\frac{c(\ln(ax))^{c-1}}{x\left(\ln^{c}\left(2a\right)-\ln^{c}\left(a\right)\right)}-1$$

We substitute $x=\frac{1}{y^{c-1}a}$

The inequality have the form :

$$\ln(u)u=p$$

Wich is just the Lambert's function .See the solution in this link . I cannot proceed further .

How to (dis)prove the first inequality ?

Thanks in advance

Blue
  • 75,673

1 Answers1

1

Sketch of a proof:

From $f'(2) = 0$, we have $$\left(\frac{\ln a}{\ln (2a)}\right)^c = 1 - \frac{c}{2\ln (2a)}.$$ Let $$g(c) = \left(\frac{\ln a}{\ln (2a)}\right)^c - 1 + \frac{c}{2\ln (2a)}.$$ We have \begin{align*} g'(c) &= \left(\frac{\ln a}{\ln (2a)}\right)^c\ln \frac{\ln a}{\ln (2a)} + \frac{1}{2\ln (2a)},\\ g''(c) &= \left(\frac{\ln a}{\ln (2a)}\right)^c \left(\ln \frac{\ln a}{\ln (2a)}\right)^2 > 0. \end{align*} Clearly $g(0) = 0$, $g'(0) < 0$, $g(1) = \frac{1 - 2\ln 2}{2\ln (2a)} < 0$ and $g(\infty) = \infty$.

Fact 1: $g(1 + \ln(2a)) > 0$.

Fact 2: $1 < c < 1 + \ln (2a)$.


Now, we have $$f''(x) = \frac{c\ln^c (ax)}{[\ln^c (2a) - \ln^c a]x^2 \ln^2 (ax)}[c - 1 - \ln (ax)].$$ Let $x_0 = \frac{1}{a}\mathrm{e}^{c - 1}$. We have $f''(x_0)= 0$, $f''(x) > 0$ on $(0, x_0)$, and $f''(x) < 0$ on $(x_0, \infty)$. Also, by Fact 2, we have $x_0 \in (0, 2)$.

Since $f(2) = 0$ and $f'(2) = 0$, noting that $f''(x) \le 0$ on $[x_0, \infty)$, we have $f(x) \le f(2) = 0$ for all $x \in [x_0, \infty)$.

Since $f(1) = 0$ and $f(x_0) \le 0$, noting that $f''(x) \ge 0$ on $(0, x_0]$, we have $f(x) \le \max\{f(1), f(x_0)\} = 0$ for all $x \in (1, x_0]$. (Note: If $g(x)$ is a convex function on $[a, b]$, then $g(x) \le \max\{g(a), g(b)\}$.)

We are done.

River Li
  • 37,323