For the first equation: $X^2-6Y^2=Z^3$ the following produces solutions in ascending $(z,y)$.
110 print "Enter H1" : input h1 : print
120 for z1 = 1 to h1
130 for y1 = 1 to h1
140 x1 = sqr(6*y1^2+z1^3)
150 if x1 = int(x1)
160 print "(" x1 "," y1 "," z1 ")\quad "
170 endif
180 next y1
190 next z1
$$(y,z) \le100\longrightarrow\quad
(5 ,2 ,1 )\quad
(49 ,20 ,1 )\quad
(9 ,3 ,3 )\quad
(81 ,33 ,3 )\quad
(40 ,16 ,4 )\\
(135 ,54 ,9 )\quad
(32 ,2 ,10 )\quad
(40 ,10 ,10 )\quad
(80 ,30 ,10 )\quad
(136 ,54 ,10 )\quad
(184 ,74 ,10 )\\
(72 ,24 ,12 )\quad
(95 ,19 ,19 )\quad
(103 ,25 ,19 )\quad
(215 ,81 ,19 )\quad
(247 ,95 ,19 )\\
(131 ,16 ,25 )\quad
(145 ,30 ,25 )\quad
(175 ,50 ,25 )\quad
(275 ,100 ,25 )\quad
(243 ,81 ,27 )\\
(180 ,30 ,30 )\quad
(252 ,78 ,30 )\quad
(256 ,16 ,40 )\quad
(320 ,80 ,40 )\quad
(301 ,43 ,43 )\\
(356 ,70 ,46 )\quad
(477 ,84 ,57 )\quad
(464 ,58 ,58 )\quad
(553 ,29 ,67 )\quad
(675 ,75 ,75 )\\
(864 ,54 ,90 )\quad
(940 ,94 ,94 )\quad $$
From this sample, we can infer that, if we fix the $z$-value, we will find streams for
$z\in\big\{1,3,4,10,12,19,25,27,30,40,43,46,57,58,67,75,90,94\big\}$
and more.
For examples
$$(9 ,3 ,3 )\quad
(81 ,33 ,3 )\quad
(801 ,327 ,3 )\quad
(7929 ,3237 ,3 )\quad
(78489 ,32043 ,3 )\quad \\
(40 ,16 ,4 )\quad
(392 ,160 ,4 )\quad
(3880 ,1584 ,4 )\quad
(38408 ,15680 ,4 )\quad
(380200 ,155216 ,4 )\\\
(32 ,2 ,10 )\quad
(40 ,10 ,10 )\quad
(80 ,30 ,10 )\quad
(136 ,54 ,10 )\quad
(184 ,74 ,10 )\\
(72 ,24 ,12 )\quad
(648 ,264 ,12 )\quad
(6408 ,2616 ,12 )\quad
(63432 ,25896 ,12 )\\
(95 ,19 ,19 )\quad
(103 ,25 ,19 )\quad
(215 ,81 ,19 )\quad
(247 ,95 ,19 )\quad
(703 ,285 ,19 )\\
(131 ,16 ,25 )\quad
(145 ,30 ,25 )\quad
(175 ,50 ,25 )\quad
(275 ,100 ,25 )\quad
(365 ,140 ,25 )\\
(243 ,81 ,27 )\quad
(2187 ,891 ,27 )\quad
(21627 ,8829 ,27 )\quad
(214083 ,87399 ,27 )\\
(180 ,30 ,30 )\quad
(252 ,78 ,30 )\quad
(324 ,114 ,30 )\quad
(540 ,210 ,30 )\quad
(1260 ,510 ,30 ) $$
To find another stream, you could, for example, change line $120$
120 for z1 = 40 to 40
and get
$$(256 ,16 ,40 )\quad
(320 ,80 ,40 )\quad
(640 ,240 ,40 )\quad
(1088 ,432 ,40 )\quad
(1472 ,592 ,40 )$$
Of course, none of this is a complete solution but the "streams" are generated as fast as the monitor can display them
and perhaps the patterns within steams can provide insight. What I find interesting are those cases whee $y=z$:
$$(9 ,3 ,3 )\quad
(40 ,10 ,10 )\quad
(95 ,19 ,19 )\quad
(301 ,43 ,43 )\quad
(464 ,58 ,58 )\quad
(940 ,94 ,94 )$$
BTW, if you have interest in the second equation (with $z^2$), there $is$ a general solution for that.