Let $\mathcal{S}$ denote the sum of the following alternating series:
$$\mathcal{S}:=\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}H_{2n}}{n^{4}}\approx-1.392562725547,$$
where $H_{n}$ denotes the $n$-th harmonic number.
Question: Is it possible to obtain a closed-form expression for $\mathcal{S}$ in terms of elementary functions and well-known special functions such as polylogarithms?
My approach was to use the following integral representation for the $n$-th harmonic number to convert the sum $\mathcal{S}$ into an integral via the technique of summing under the integral sign:
$$H_{n}=\int_{0}^{1}\mathrm{d}t\,\frac{1-t^{n}}{1-t};~~~\small{n\in\mathbb{Z}_{\ge0}}.$$
We find
$$\begin{align} \mathcal{S} &=\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}H_{2n}}{n^{4}}\\ &=\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}}{n^{4}}\int_{0}^{1}\mathrm{d}t\,\frac{1-t^{2n}}{1-t}\\ &=\int_{0}^{1}\mathrm{d}t\,\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}}{n^{4}}\cdot\frac{1-t^{2n}}{1-t}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{1}{1-t}\left[\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}}{n^{4}}-\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}t^{2n}}{n^{4}}\right]\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{\operatorname{Li}_{4}{\left(-1\right)}-\operatorname{Li}_{4}{\left(-t^{2}\right)}}{1-t}\\ &=-\int_{0}^{1}\mathrm{d}t\,\frac{2\ln{\left(1-t\right)}\operatorname{Li}_{3}{\left(-t^{2}\right)}}{t};~~~\small{I.B.P.}\\ &=2\operatorname{Li}_{2}{\left(1\right)}\operatorname{Li}_{3}{\left(-1\right)}-\int_{0}^{1}\mathrm{d}t\,\frac{4\operatorname{Li}_{2}{\left(t\right)}\operatorname{Li}_{2}{\left(-t^{2}\right)}}{t};~~~\small{I.B.P.}\\ &=-\frac32\zeta{\left(2\right)}\,\zeta{\left(3\right)}-4\int_{0}^{1}\mathrm{d}t\,\frac{\operatorname{Li}_{2}{\left(t\right)}\operatorname{Li}_{2}{\left(-t^{2}\right)}}{t}.\\ \end{align}$$
Any ideas how to proceed from here?