This is more a comment or observation for the OP, but it fits better in this section.
The answer in the link you are referring to shows that, under a non degeneracy condition $|\gamma_m|<1$, $m\in\mathbb{N}$, (which fails for instance when $X_1$ is supported in $\mathbb{Z}$), for any continuous function $f$ on the circle $\mathbb{S}^1$
$$E[f(e^{2\pi iS_n})]\xrightarrow{n\rightarrow\infty}\int^1_0f(e^{2\pi ix})\,dx$$
This is equivalent to saying that the distribution of $e^{2\pi iS_n}$ (which is a random variable in $\mathbb{S}^1$) converges weakly to the uniform distribution on $\mathbb{S}^1$, that is, the normalized arc-length measure on the circle $\mathbb{S}^1$.
The identification of $\mathbb{S}^1$ with $\mathbb{R}/\mathbb{Z}$ allows us to be a little loose and consider functions on $\mathbb{S}^1$ as $1$ periodic functions on $\mathbb{R}$, or as functions on $\mathbb{R}\operatorname{mod}1$. The geometric picture is the of wrapping the real line around the circle $\mathbb{S}^1$, but of course this can be done rigorously with simple topological arguments.
To conclude rigorously that the law of $S_n-\lfloor S_n\rfloor$ converges weakly to the uniform distribution $U(0,1)$, one may use the following observations:
- $e^{2\pi ix}=e^{2\pi i\{x\}}$ for all $x\in\mathbb{R}$, where $\{x\}:=x-\lfloor x\rfloor$.
- The function $\phi:[0,1)\rightarrow\mathbb{S}^1$ given by $x\mapsto e^{2\pi ix}$ is continuous and bijective; the inverse $\phi^{-1}:\mathbb{S}^1\rightarrow[0,1)$ which maps $z=e^{2\pi i\theta}\mapsto\{\theta\}$ is measurable and continuous in $\mathbb{S}^1\setminus\{1\}$. The point of discontinuity has arc-length measure $0$.
Recall the following result from Probability (Billingsley, P., Convergence of Probability measures, Wiley 1968)
Theorem: Suppose $(S,d)$, $(S',d')$ are metric spaces, and that $\{\mu_n,\mu:n\in\mathbb{N}\}$ are Borel measures on $(S,d)$ such that $\mu_n\stackrel{n\rightarrow\infty}{\Longrightarrow}\mu$. If $f:S\rightarrow S'$ is a measurable function that is continuous $\mu$-almost surely (i.e. the set of discontinuities $D_f$ of $f$ has measure $\mu(D_f)=0$), then $\mu_n\circ f^{-1}\stackrel{n\rightarrow\infty}{\Longrightarrow}\mu\circ f^{-1}$, that is, for any $g\in\mathcal{C}_b(S')$,
$$\lim_n\int_Sg(f(x))\,\mu_n(dx)\xrightarrow{n\rightarrow\infty}\int_S g(f(x))\,\mu(dx)$$
In terms of random variables, the result says that of $X_n$, $X$ are random variables with values in $S$ and $X_n\stackrel{n\rightarrow\infty}{\Longrightarrow} X$, then $f(X_n)\stackrel{n\rightarrow\infty}{\Longrightarrow}f(X)$
An application of the theorem above implies that $\phi^{-1}(e^{2\pi iS_n})=S_n-\lfloor S_n\rfloor \stackrel{n\rightarrow\infty}{\Longrightarrow} U(0,1)$, where $U(0,1)$ is the uniform distribution on the interval $[0,1)$.