let $x^3+y^3+z^3=3,x,y,z>0$ show that $$\dfrac{x}{y^2+5}+\dfrac{y}{z^2+5}+\dfrac{z}{x^2+5}\le\dfrac{1}{2}$$
I have show that let $x,y,z$ be positive numbers,such that $x+y+z=3$,prove that $$\dfrac{x}{1+y^3}+\dfrac{y}{1+z^3}+\dfrac{z}{1+x^3}\ge\dfrac{3}{2}$$ pf: use $AM-GM$ we have $$\dfrac{x}{1+y^3}=x-\dfrac{xy^3}{1+y^3}\ge x-\dfrac{xy^3}{2y^{3/2}}=x-\dfrac{xy^{3/2}}{2}$$ and,similarly $$\dfrac{y}{1+z^3}\ge y-\dfrac{yz^{3/2}}{2},\dfrac{z}{1+x^3}\ge z-\dfrac{zx^{3/2}}{2}$$ Thus,it suffices to show that $$xy^{3/2}+yz^{3/2}+zx^{3/2}\le 3$$ and it is known that $$(a^3b^2+b^3c^2+c^3a^2)^2\le\dfrac{1}{3}(a^2+b^2+c^2)^3$$ seting $x=a^2,y=b^2,z=c^2$,by done!
But for this problem : $$y^2+5=y^2+1+1+1+1+1\ge 6y^{1/3}$$ and similarly $$z^2+5\ge 6z^{1/3}, x^2+5\ge 6x^{1/3}$$ it suffices prove that $$xy^{-1/3}+yz^{-1/3}+zx^{-1/3}\le 3$$ with $x^3+y^3+z^3=3$,I use maple find this is ($xy^{-1/3}+yz^{-1/3}+zx^{-1/3}\le 3$,with $x^3+y^3+z^3=3$) not true!,But after I use maple find this $\dfrac{x}{y^2+5}+\dfrac{y}{z^2+5}+\dfrac{z}{x^2+5}\le\dfrac{1}{2},x^3+y^3+z^3=3$ is true!
and my other idea $$\dfrac{x}{y^2+5}+\dfrac{y}{z^2+5}+\dfrac{z}{x^2+5}\le\dfrac{1}{2}$$ $$\Longleftrightarrow 2\sum x^2y^3+10\sum x^2y+50\sum x-5\sum x^2y^2-25\sum y^2-x^2y^2z^2\le 95$$
so I think my methods can't prove this problem, can someone use other methods show it? Thank you everyone.