I have a lemma for a basis of a topology:
Let $X$ a non-empty set. $\mathcal B\subset \mathcal P (X)$ is basis of any topology on $X$ if and only if:
$X=\bigcup_{B\in \mathcal{B}}B$
$\forall B_1, B_2\in\mathcal B, \ \forall x\in B_1\cap B_2 \ \exists B_3 \mid x\in B_3\subset B_1\cap B_2$.
What if for example $X=\{1,2,3\}$, $\mathcal{B}=\{\{1\},\{2\},\{3\}\}$. What if we have $x\in \{1\} \cap \{2\} = \emptyset$. Then how do we find a $B_3$?