I am trying to prove that Proving $f\left(\bigcup\limits_{i \in I} A_i\right) = \bigcup\limits_{i \in I} f(A_i)$. Here is my attempt.
Given $y \in Y$, we have: \begin{align*} y \in f\left(\bigcup\limits_{i \in I} A_i\right) & \iff \exists a \in \bigcup\limits_{i \in I} A_i, \; y = f(a) \\ & \iff \exists i \in I, \; a \in A_i, \; y = f(a) \\ & \iff \exists i \in I, \; y \in f(A_i) \\ & \iff y \in \bigcup\limits_{i \in I} f(A_i). \end{align*}
How does this look?