Can someone help with this sum?
Prove $$S=\lim_{n\rightarrow\infty}\sum_{k=1}^n (-1)^{k-1}{n\choose k}\frac{k}{2^k-1}=\frac{1}{\ln2}$$
I have tried to break down the $\frac{k}{2^k-1}=\sum_{j=1}^\infty \frac{k}{2^{kj}}$ and tried writing it as $$\lim_{n\rightarrow\infty}\sum_{j=1}^\infty\sum_{k=1}^n (-1)^{k-1}{n\choose k}k\left(\frac{1}{2^{j}}\right)^k,$$then using the binomial summation as such, note $\left(x=\frac{1}{2^j}\right)$ $$\lim_{n\rightarrow\infty}\sum_{j=1}^\infty\frac{1}{2^j}\frac{\mathrm{d}}{\mathrm{d}x}\left(\sum_{k=1}^n (-1)^{k-1}{n\choose k}x^{k}\right)=\lim_{n\rightarrow\infty}\sum_{j=1}^\infty\frac{n(1-x)^{n-1}}{2^j}.$$ Giving us the final sum to be $$\lim_{n\rightarrow\infty}\sum_{j=1}^\infty\frac{n\left(1-\frac{1}{2^j}\right)^{n-1}}{2^j},$$ the limit of which seems to be $0$. Which is not what we want, can someone tell me where my mistakes lie, and also point towards the solution or present it themselves. Thanks in Advance.
