0

Let $\theta=\sin^{-1}\frac{1}{2}$ We know,$\sin(\pi-\theta)=\sin \theta$ or, $$\sin(\pi-\sin^{-1}\frac{1}{2})=\sin(\sin^{-1}\frac{1}{2})$$ or, $$\pi-\sin^{-1}\frac{1}{2}=\sin^{-1}\frac{1}{2}$$ or $$2\sin^{-1}\frac{1}{2}=\pi$$ or $$\sin^{-1}\frac{1}{2}=\frac{\pi}{2}$$ or $$\frac{1}{2}=\sin \frac{\pi}{2}$$ or $$\frac{1}{2}=1$$ I don't understand what's wrong with the argument.I know I messed up the principal values but can't yet find the error.

Blue
  • 75,673
a_i_r
  • 671

3 Answers3

1

It is true that if $x,y\in\left[-\frac\pi2,\frac\pi2\right]$ and $\sin(x)=\sin(y),$ then $x=y.$

It is also true that $\sin(\pi -x)=\sin(x)$ for any $x.$

These two together show, with your argument, that if $x$ and $\pi-x$ are both in the range $\left[-\frac\pi2,\frac\pi2\right]$ then $x=\frac\pi2.$

But if $x<\frac{\pi}{2}.$ then $\pi-x>\frac{\pi}{2}.$ So this is not as big a result as one might initially think.

Thomas Andrews
  • 177,126
0

The principal solution to $\theta=\sin^{-1}(\frac 12)$ is $\theta=\frac\pi 6$

Note that $\pi-\frac\pi 6=\frac{5\pi}{6}\neq \frac \pi 6$ (while $\sin(\frac{5\pi}{6})=\frac12$ still holds)

Indeed, the quality $f(x)=f(y)\implies x=y$ defines an injective, or one-to-one, function, which $\sin$ is not.

Rhys Hughes
  • 12,842
0

Your mistake is that $\require{cancel} \sin x=\sin y \implies x \cancel= y$ . This might be of some use. Take for example $ \sin 135 = \sin 405$ but here $135\cancel=405$.