We define $u_n$ and $v_n$ by writing
$\tag 1 f(x_n) = f(a) + f'(a)(x_n-a) + u_n$
and
$\tag 2 f(y_n) = f(a) + f'(a)(y_n-a) + v_n$
The existence of the derivative $f'(a)$ implies that
$\quad \displaystyle \lim \frac{u_n}{x_n-a} = 0 \; \land \; \lim \frac{v_n}{y_n-a}
= 0$
Since $|y_n - x_n| \gt |x_n - a|$ and $|y_n - x_n| \gt |y_n - a|$ we must also have
$\tag 3 \displaystyle \lim \frac{u_n}{y_n-x_n} = 0 \; \land \; \lim \frac{v_n}{y_n-x_n}
= 0$
Subtracting $\text{(1)}$ from $\text{(2)}$,
$\tag 4 f(y_n) - f(x_n) = f'(a)(y_n-x_n) + v_n - u_n$
Dividing by $y_n-x_n$,
$\tag 5 \displaystyle \frac{f(y_n) - f(x_n)}{y_n-x_n} = f'(a) + \frac{v_n}{y_n-x_n} - \frac{u_n}{y_n-x_n}$
Applying $\text{(3)}$ to $\text{(5)}$ we arrive at the desired result,
$\tag 6 \displaystyle \lim \frac{f(y_n) - f(x_n)}{y_n-x_n} = f'(a)$