Utilize the integral
$$\int_0^1 \frac{2(y^2-1)\cos 2t}{y^4+1-2y^2\cos 4t}dy =\ln(\tan t)
$$
to prove
\begin{align}
&\int_0^{2-\sqrt3}\frac{\ln x}{1+x^2}dx \\= & \int_0^\frac\pi{12}\ln(\tan t)~dt
= \int_0^1 \int_0^{\frac\pi{12} }
\frac{2(y^2-1)\cos 2t}{y^4+1-2y^2\cos 4t}dt \ dy\\= &\ -\frac12\int_0^1\frac1y \tan^{-1}\frac y{1-y^2} dy
= -\frac12\int_0^1\frac{\tan^{-1}y^3}y \overset{y^3\to y}{dy}
-\frac12\int_0^1\frac{\tan^{-1}y}y dy\\=&- \frac23\int_0^1\frac{\tan^{-1}y}ydy
\overset{ibp}
=\frac23\int_0^1\frac{\ln y}{1+y^2}dy
\end{align}