Sorry, I don't know how to use latex.
I heard that $e^x$ equals to $\lim\limits_{n \to \infty} (1+\frac{x}{n})^n$. I tried to prove it, but I couldn't. Why it works and how to make it?
$$e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$$ - The interest rates formula - and so: $$e^x=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{nx}=\lim_{n,m\to\infty}\left(1+\frac{1}{n}\right)^m=\lim_{m\to\infty}\left(1+\frac{1}{m/x}\right)^m=\lim_{m\to\infty}\left(1+\frac{x}{m}\right)^m$$
Where I have set $m=nx$.
A very similar idea is the proof that: $$e^x=\lim_{n\to0}\left(1+xn\right)^{\frac{1}{n}}$$
Try this one for yourself!
Both of these only work for real $x$.
Using the properties of $\ln$ and $\exp$: $$(1+\frac{x}{n})^n=\exp(n \ln(1+\frac{x}{n}))$$ Since $\frac{x}{n} \underset{n \rightarrow + \infty}{\rightarrow} 0$ and $\ln(1+t) \underset{0}{=} t + o(t)$, we have: $$\underset{n \rightarrow + \infty}{\lim} n \ln(1+\frac{x}{n})=n \frac{x}{n}=x$$ And since $\exp$ is continuous, we get $$\underset{n \rightarrow + \infty}{\lim} (1+\frac{x}{n})^n=\exp(x)$$
Show the limit of the log is $x$, which is easy with asymptotic equivalence: $$\ln\Bigl(1+\frac xn\Bigr)^n=n\ln\Bigl(1+\frac xn\Bigr)\sim_\infty n\,\frac xn=x.$$