For $n > 1$, $$A = \begin{pmatrix} {a_1}^2 & a_1a_2 & ... a_1a_n \\ a_2a_1 & {a_2}^2 & ... a_1a_n \\.... \\ a_na_1 & a_na_2 & ... {a_n}^2 \end{pmatrix}$$
The characteristic polynomial of matrix $A$ is $x^{n-1}(x-tr(A))$
My question is that how to find characteristic polynomial of matrix $A$
My Attempt:
I noticed that elements of $A$ are of the form $a_{ij} = a_ia_j$ for all $1\leq i,j \leq n$ So $$A = \begin{pmatrix} {a_1}^2 & a_1a_2 & ... a_1a_n \\ a_2a_1 & {a_2}^2 & ... a_1a_n \\.... \\ a_na_1 & a_na_2 & ... {a_n}^2 \end{pmatrix} = \begin{pmatrix} a_1 & a_1 & ... a_1 \\ a_2 & a_2 & ... a_2 \\.... \\ a_n & a_n & ... a_n\end{pmatrix}×\begin{pmatrix} a_1 & a_1 & ... a_1 \\ a_2 & a_2 & ... a_2 \\.... \\ a_n & a_n & ... a_n\end{pmatrix}$$