12

I'm interested in evaluating the following integral $ \DeclareMathOperator{\Li}{Li}$

$$ \mathcal{A} = -\int_0^1 \frac{\ln(1-x)}{1+x} \Li_2(x) \, \mathrm{d}x $$

My most successful attempt thus far went like this:

First, converting the dilogarithm to its integral form yields

$$ \mathcal{A} = \int_0^1 \int_0^1 \frac{\ln(1-x) \ln(1-xt) }{t(1+x)} \, \mathrm{d}t \, \mathrm{d}x $$

Interchanging the bounds of integration yields

$$ \mathcal{A} = \int_0^1 \int_0^1 \frac{\ln(1-x) \ln(1-xt) }{t(1+x)} \, \mathrm{d}x \,\mathrm{d}t $$

For the inner integral, we have

$$ \mathfrak{J}(t) = \int_0^1 \frac{ \ln(1-x)\ln(1-xt) }{(1+x)} \, \mathrm{d}x $$

Differentiating under the integral with respect to $t$ and then applying partial fractions yields

$$ \mathfrak{J}'(t) = \frac{1}{1+t} \int_{0}^{1} \frac{\ln(1-x) }{tx-1} \, \mathrm{d}x +\frac{1}{1+t} \int_0^1 \frac{\ln(1-x)}{1+x} \, \mathrm{d}x $$

This evaluates (not) very nicely to

$$ \mathfrak{J}'(t) = \frac{1}{t(1+t) } \Li_2\left(\frac{t}{1-t} \right) +\frac{1}{1+t} \left( \frac{\ln^2(2)}{2} -\frac{\pi^2}{12} \right) $$

This means that our original integral is equivalent to solving

$$ \mathcal{A} = \int_0^1 \int_0^t \frac{1}{at(1+a)} \Li_2 \left(\frac{a}{1-a} \right) \, \mathrm{d}a \, \mathrm{d}t + \left(\frac{\ln^2(2)}{2}-\frac{\pi^2}{12} \right) \int_0^1 \int_0^t \frac{1}{t(1+a)} \, \mathrm{d}a \, \mathrm{d}t $$

The second part of the integral above is trivial, what's giving me trouble is the first part. Any help whatsoever is much appreciated!

Hunter
  • 367
  • I wonder how you wrote your MathJax code. You repeatedly used \displaystyle when an actual display would have been even better, and less onerous to you while typing, and you repeatedly used the \tag command in a way that does not result in any actual tags. (You also repeatedly put not space between f(x) and dx.) – Michael Hardy Aug 13 '21 at 21:55
  • @MichaelHardy Maybe I'm misinterpreting it's usage, but can't the command 'tag*{}' be used to center align text, I know that it's primary use is to mark equations, but can't it be also used to center align text? – Hunter Aug 13 '21 at 22:09
  • 2
    It does have that effect in MathJax (I've never tried it in genuine LaTeX) but it's a lot simpler to just do the whole thing in display. – Michael Hardy Aug 13 '21 at 22:17
  • Ah, Okay. I did not not know of this, or infact of what even 'display' was. I'll keep it in mind the next time I make a post. Also, Thank you very much for the edits. – Hunter Aug 13 '21 at 22:21
  • I think this type of integrals is covered by the HPL package https://arxiv.org/abs/hep-ph/0507152, which implements techniques in https://arxiv.org/abs/hep-ph/9905237, though I am not sure if the result can be cast into classical (including Nielsen's) polylogs. You may also be interested in similar integrals in section 7 of https://arxiv.org/abs/hep-ph/9806280. – tueda Aug 14 '21 at 09:08
  • 1
    As an application of the techniques in https://arxiv.org/abs/hep-ph/9905237, Mathematica with the code HPL = SpecialFunctions`HarmonicPolyLog; SpecialFunctions`ShuffleProductExpand[HPL[{1}, x] HPL[{2}, x]] /. HPL[{m__}, x] -> HPL[{-1, m}, 1] // Simplify gives $-3\mathrm{Li}_4(1/2) + 29 \pi^4 / 1440 - \log^4(2) / 8 + \pi^2 \log^2(2) / 24$, which is about 0.577998. – tueda Aug 14 '21 at 09:34
  • $-I=\frac{\pi^2}{12} \ln^22-ES(1,-1;-2)$.$ES(1,-1;-2)$ is a Level 4 MZV.And $ES(1,-1,-2)=\frac{\pi^2}{8} \ln^22 +\frac{29\pi^4}{1440} -\frac{1}{8} \ln^42 -3\text{Li}4\left ( \frac{1}{2} \right )$ where$ES(1,-1;-2)=\sum{n=1}^{\infty} \frac{(-1)^{n-1}H_n\widetilde{H_n}}{n^2}$ where $\widetilde{H_n}=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}$ – Setness Ramesory Aug 14 '21 at 10:13
  • 1
    the mathematica code:$\text{MZIntegrate} \left [ \mathrm{Log}\left [1- x \right ] /(1+x) \text{PolyLog}[2,x],{x,0,1} \right ]$ also gives the value. – Setness Ramesory Aug 14 '21 at 10:19
  • Check https://www.facebook.com/photo/?fbid=2372419839521467&set=a.222846247812181 and https://www.facebook.com/photo/?fbid=2374024339361017&set=a.222846247812181 – user97357329 Aug 14 '21 at 10:37

3 Answers3

6

The integral is immediately derived by combining the integral result at the point $i)$, Sect. $1.27$, page $17$, from the book (Almost) Impossible Integrals, Sums, and Series and Landen's identity, and we get $$\int_0^1 \frac{\ln(1-x)}{1+x} \operatorname{Li}_2(x)\textrm{d}x=3\operatorname{Li}_4\left(\frac{1}{2}\right)-\frac{1}{4}\log^2(2)\zeta(2)-\frac{29}{16}\zeta(4)+\frac{1}{8}\log^4(2).$$ The other resulting integral is trivial, that is $\displaystyle \int_0^1 \frac{\log^3(1-x)}{1+x}\textrm{d}x=-6\operatorname{Li}_4\left(\frac{1}{2}\right).$

End of story (also subtler ways are possible)

Additional information: If also interested in the following very similar integral, $\displaystyle \int_0^1 \frac{\log(1-x)}{1+x} \operatorname{Li}_2(-x)\textrm{d}x$, one may find it calculated here.

user97357329
  • 5,319
  • 1
    The result is: $\displaystyle \int_0^1 \frac{\ln(1-x)}{1+x} \operatorname{Li}_2(x)\textrm{d}x= -\frac{29}{1440}\pi^4-\frac{1}{24}\pi^2\ln^2 2+3\text{Li}_4\left(\frac{1}{2}\right)+\frac{1}{8}\ln^4 2$ – FDP Aug 14 '21 at 21:08
  • @FDP The same result, except that I (often) find it neater to use zeta values. – user97357329 Aug 14 '21 at 22:23
5

\begin{align*}J&=\int_0^1 \frac{\ln(1-t)\text{Li}_2(t)}{1+t}dt\\ &=-\int_0^1 \frac{\ln(1-t)}{1+t}\left(\int_0^t\frac{\ln(1-u)}{u}du\right)dt\\ &=-\int_0^1\int_0^1 \frac{\ln(1-t)\ln(1-tu)}{u(1+t)}dtdu\\ &\overset{x=1-tu,y=\frac{1-t}{1-tu}}=-\int_0^1\int_0^1 \frac{x\ln x\ln(xy)}{(1-x)(2-xy)}dxdy\\ &=2\int_0^1\int_0^1\frac{\ln x\ln(xy)}{(2-y)(2-xy)}dxdy-\int_0^1\int_0^1 \frac{\ln x\ln(xy)}{(1-x)(2-y)}dxdy\\ &=\underbrace{\int_0^1\int_0^1\frac{\ln^2(xy)+\ln^2 x-\ln^2 y}{(2-y)(2-xy)}dxdy}_{=\text{A}}-\underbrace{\left(\int_0^1\frac{\ln x}{1-x}dx\right)\left(\int_0^1\frac{\ln y}{2-y}dy\right)}_{=\frac{\pi^4}{72}-\frac{\pi^2\ln^2 2}{12}}-\\&\underbrace{\int_0^1\frac{\ln^2 x}{(1-x)(2-y)}dxdy}_{=2\zeta(3)\ln2 }\\ \end{align*} \begin{align*} \text{A}&=\underbrace{\int_0^1\int_0^1\frac{\ln^2(xy)}{(2-y)(2-xy)}dxdy}_{u(x)=xy}+\frac{1}{2}\underbrace{\int_0^1 \frac{\ln(2-x)\ln^2 x}{1-x}dx}_{u=1-x}-\underbrace{\int_0^1 \frac{\ln\left(\frac{2}{2-y}\right)\ln^2 y}{y(2-y)}dy}_{u=1-y}\\ &=\underbrace{\int_0^1\frac{1}{y(2-y)}\left(\int_0^y \frac{\ln^2 u}{2-u}du\right)dy}_{\text{IBP}}+\frac{1}{2}\underbrace{\int_0^1 \frac{\ln(1+u)\ln^2(1-u)}{u}du}_{=\text{B}}-\\&\underbrace{\int_0^1 \frac{\ln\left(\frac{2}{1+u}\right)\ln^2(1-u)}{1-u^2}du}_{z=\frac{1-u}{1+u}}\\ &=\left(\frac{1}{2}\left[\ln\left(\frac{y}{2-y}\right)\left(\int_0^y \frac{\ln^2 u}{2-u}du\right)\right]_0^1-\frac{1}{2}\underbrace{\int_0^1\frac{\ln^3 y}{2-y}dy}_{=-6\text{Li}_4\left(\frac{1}{2}\right)}+\frac{1}{2}\underbrace{\int_0^1\frac{\ln(2-y)\ln^2 y}{2-y}dy}_{z=\frac{y}{2-y}}\right)+\\&\frac{1}{2} \text{B}-\frac{1}{2}\underbrace{\int_0^1\frac{\ln(1+z)\ln^2\left(\frac{2z}{1+z}\right)}{z}dz}_{=\text{C}}\\ &=3\text{Li}_4\left(\frac{1}{2}\right)+\frac{1}{2}\underbrace{\int_0^1\frac{\ln\left(\frac{2}{1+z}\right)\ln^2\left(\frac{2z}{1+z}\right)}{1+z}dz}_{=\text{D}}+\frac{1}{2}\text{B}-\frac{1}{2}\text{C}\\ \end{align*} \begin{align*} \text{B}&=\frac{1}{6}\left(\underbrace{\int_0^1 \frac{\ln^3(1-u^2)}{u}du}_{z=1-u^2}-\underbrace{\int_0^1 \frac{\ln^3\left(\frac{1-u}{1+u}\right)}{u}du}_{z=\frac{1-u}{1+u}}-2\underbrace{\int_0^1 \frac{\ln^3(1+u)}{u}du}_{z=\frac{1}{1+u}}\right)\\ &=\frac{1}{6}\left(\frac{1}{2}\int_0^1 \frac{\ln^3 z}{1-z}dz-2\int_0^1 \frac{\ln^3 z}{1-z^2}dz+2\int_{\frac{1}{2}}^1 \frac{\ln^3 z}{z(1-z)}dz\right)\\ &=\frac{1}{6}\left(\frac{1}{2}\int_0^1 \frac{\ln^3 z}{1-z}dz-\int_0^1 \frac{\ln^3 z}{1-z}dz-\int_0^1 \frac{\ln^3 z}{1+z}dz+2\int_{\frac{1}{2}}^1 \frac{\ln^3 z}{1-z}dz-\frac{1}{2}\ln^4 2\right)\\ &=\frac{1}{6}\left(\frac{3}{2}\underbrace{\int_0^1 \frac{\ln^3 z}{1-z}dz}_{=-\frac{\pi^4}{15}}-\underbrace{\int_0^1 \frac{\ln^3 z}{1+z}dz}_{=-\frac{7\pi^4}{120}}-2\underbrace{\int_0^{\frac{1}{2}} \frac{\ln^3 z}{1-z}dz}_{=\frac{\pi^2\ln^2}{4}-6\text{Li}_4\left(\frac{ 1}{2}\right)-\frac{21}{4}\zeta(3)\ln 2-\frac{1}{2}\ln^4 2}-\frac{1}{2}\ln^4 2\right)\\ &=-\frac{1}{144}\pi^4-\frac{1}{12}\pi^2\ln^2 2+\frac{1}{12}\ln^4 2+\frac{7}{4}\zeta(3)\ln 2+2\text{Li}_4\left(\frac{ 1}{2}\right)\\ \text{D}&=\underbrace{\int_0^1\frac{\ln^3\left(\frac{2}{1+z}\right)}{1+z}dz}_{u=\frac{1-z}{1+z}}+2\underbrace{\int_0^1\frac{\ln z\ln^2\left(\frac{2}{1+z}\right)}{1+z}dz}_{u=\frac{1-z}{1+z}}+\int_0^1\frac{\ln^2 z\ln\left(\frac{2}{1+z}\right)}{1+z}dz\\ &=\frac{1}{4}\ln^4 2+2\int_0^1\frac{\ln\left(\frac{1-u}{1+u}\right)\ln^2\left(1+u\right)}{1+u}du-\underbrace{\int_0^1 \frac{\ln(1+u)\ln^2 u}{1+u}du}_{=-\frac{\pi^4}{24}-\frac{\pi^2\ln^2 2}{6}+4\text{Li}_4\left(\frac{1}{2}\right)+\frac{7}{2}\zeta(3)\ln 2+\frac{1}{6}\ln^4 2}+\\&\ln 2\underbrace{\int_0^1 \frac{\ln^2 u}{1+u}du}_{=\frac{3}{2}\zeta(3)}\\ &=2\underbrace{\int_0^1 \frac{\ln(1-u)\ln^2(1+u)}{1+u}du}_{=\text{E}}+\frac{1}{24}\pi^4+\frac{1}{6}\pi^2\ln^2 2-\frac{5}{12}\ln^4 2-2\zeta(3)\ln 2-4\text{Li}_4\left(\frac{1}{2}\right)\\ \text{E}&=\frac{1}{3}\left(\underbrace{\int_0^1 \frac{\ln^3\left(\frac{1-u}{1+u}\right)}{1+u}du}_{z=\frac{1-u}{1+u}}-\underbrace{\int_0^1 \frac{\ln^3\left(1-u\right)}{1+u}du}_{z=1-u}+\int_0^1 \frac{\ln^3\left(1+u\right)}{1+u}du+3\underbrace{\int_0^1 \frac{\ln^2\left(1-u\right)\ln(1+u)}{1+u}du}_{z=\frac{1-u}{1+u}}\right)\\ &=-\frac{7}{360}\pi^4+2\text{Li}_4\left(\frac{1}{2}\right)+\frac{1}{12}\ln^4 2+\text{D}\\ \text{D}&=\frac{1}{360}\pi^4+\frac{1}{6}\pi^2\ln^2 2-\frac{1}{4}\ln^4 2-2\zeta(3)\ln 2+2\text{D}\\ \text{D}&=-\frac{1}{360}\pi^4-\frac{1}{6}\pi^2\ln^2 2+\frac{1}{4}\ln^4 2+2\zeta(3)\ln 2 \end{align*} \begin{align*} C&=\underbrace{\int_0^1 \frac{\ln^3(1+z)}{z}dz}_{u=\frac{1}{1+z}}-2\underbrace{\int_0^1 \frac{\ln^2(1+z)\ln z}{z}dz}_{\text{IBP}}+\underbrace{\int_0^1 \frac{\ln(1+z)\ln^2 z}{z}dz}_{\text{IBP}}-\\&2\ln 2\underbrace{\int_0^1 \frac{\ln^2(1+z)}{z}dz}_{u=\frac{1}{1+z}}+2\ln 2\underbrace{\int_0^1 \frac{\ln(1+z)\ln z}{z}dz}_{\text{IBP}}+\ln^2 2\underbrace{\int_0^1 \frac{\ln(1+z)}{z}dz}_{=\frac{\pi^2}{12}}\\ &=\left(\frac{1}{4}\ln^4 2-\underbrace{\int_{\frac{1}{2}}^{1}\frac{\ln^3 u}{1-u}du}_{=-\frac{\pi^4}{15}-\frac{\pi^2\ln^2 2}{4}+\frac{21\zeta(3)\ln 2}{4}+\frac{\ln^4 2}{2}+6\text{Li}_4\left(\frac{1}{2}\right)} \right)+2\underbrace{\int_0^1\frac{\ln(1+z)\ln^2 z}{1+z}dz}_{=-\frac{\pi^4}{24}-\frac{\pi^2\ln^2 2}{6}+\frac{7\zeta(3)\ln 2}{2}+\frac{\ln^4 2}{6}+4\text{Li}_4\left(\frac{1}{2}\right)}-\\&\frac{1}{3}\underbrace{\int_0^1\frac{\ln^3 z}{1+z}dz}_{=-\frac{7\pi^4}{120}}-2\ln 2\left(\frac{1}{3}\ln^3 2+\underbrace{\int_{\frac{1}{2}}^{1}\frac{\ln^2 u}{1-u}du}_{=\frac{1}{4}\zeta(3)-\frac{1}{3}\ln^3 2} \right)-\ln 2\underbrace{\int_0^1 \frac{\ln^2 z}{1+z}dz}_{=\frac{3}{2}\zeta(3)}+\frac{1}{12}\pi^2\ln^2 2\\ &=\frac{1}{360}\pi^4+\frac{1}{12}\ln^4 2-\frac{1}{4}\zeta(3)\ln 2+2\text{Li}_4\left(\frac{1}{2}\right)\\ A&=-\frac{1}{160}\pi^4-\frac{1}{8}\pi^2 \ln^2 2+\frac{1}{8}\ln^4 2+2\zeta(3)\ln 2+3\text{Li}_4\left(\frac{1}{2}\right)\\ J&=\boxed{-\dfrac{29}{1440}\pi^4-\dfrac{1}{24}\pi^2\ln^2+\dfrac{1}{8}\ln^4 2+3\text{Li}_4\left(\dfrac{1}{2}\right)} \end{align*}

FDP
  • 13,647
1

\begin{align} I &=\int_0^1 \frac{\ln(1-x)Li_2(x)}{1+x}dx\\ &= \int_0^1 \frac{\ln x Li_2(1-x)}{2-x}dx \overset{ibp} =-\int_0^1 \frac{\ln x}{1-x}\left(\int_0^x\frac{\ln t}{2-t} \overset{t=x y}{dt}\right)dx\\ &=\int_0^1 \int_0^1 \left( -\frac{x \ln^2x }{(1-x)(2-xy)}+\frac{2\ln x\ln y}{(2-y)(2-xy)}-\frac{\ln x \ln y} {(2-y)(1-x)}\right) dy dx \\ &=J+2K-Li_2(1)Li_2(\frac12)\tag1 \end{align} where \begin{align} J&=- \int_0^1 \int_0^1 \frac{x \ln^2x }{(1-x)(2-xy)}dy dx\\ & =\int_0^1 \frac{1}{2-y}\left(\int_0^1 \frac {2\ln^2x}{2-yx}dx - \int_0^1 \frac{\ln^2x}{1-x}dx\right) dy \\ &= 2 \int_0^1\frac{Li_3(\frac y2)}{y}dy + 2 \int_0^1\frac{Li_3(\frac y2)-Li_3(1)}{2-y}\>\overset{ibp}{dy}\\ &= 2Li_4(\frac12) - Li_2^2(\frac12)+2\ln2(Li_3(\frac12)-Li_3(1)) \end{align} and \begin{align} K &=\int_0^1 \int_0^1 \frac{\ln x \ln y}{(2-y)(2-xy)}\overset{x=t/y}{dx }dy= \int_0^1 \frac{ \ln y}{y(2-y)} \int_0^y\frac{\ln t-\ln y}{2-t}dt\>dy\\ &= \frac12 \int_0^1 \left( \frac{\ln y}y+ \frac{\ln y}{2-y}\right)\left(\int_0^y \frac{\ln t}{2-t}dt + \ln y\ln \frac{2-y}2\right)dy\\ &\overset{ibp}=-\frac1{12}\int_0^1\frac{\ln^3 y}{2-y}dy+\frac14\left(\int_0^1 \frac{\ln y}{2-y}dy\right)^2 +\frac12\int_0^1 \frac{\ln^2y\ln\frac{2-y}2}{2-y} \overset{y\to 2y}{dy}\\ &=\frac12Li_4(\frac12)+\frac14Li_2^2(\frac12)+\frac12\int_0^{1/2} \frac{\ln^2(2y)\ln(1-y)}{1-y}dy \end{align} Note

\begin{align} &\int_0^{1/2} \frac{\ln^2(2y)\ln(1-y)}{1-y}dy\\ =& \>\ln2 \int_0^{1/2} \frac{\ln(2y^2)\ln(1-y)}{1-y}\>\overset{ibp}{dy} + \int_0^{1/2} \frac{\ln^2y\ln(1-y)}{1-y}\overset{y\to1-y}{dy}\\ =& 2\ln2(Li_3(1)-Li_3(\frac12))-2\ln^22Li_2(\frac12)-\frac34\ln^42 +\frac12\int_0^{1} \frac{\ln^2y\ln(1-y)}{1-y}dy \end{align} with \begin{align} &\int_0^1 \frac{\ln^2x \ln (1-x)}{1-x}dx = \int_0^1 \frac{\ln^2x}{1-x}\left(-\int_0^1 \frac x{1-x y}dy\right) dx\\ =&\int_0^1 \frac{1}{1-y}\left(\int_0^1 \frac {\ln^2x}{1-yx}dx - \int_0^1 \frac{\ln^2x}{1-x}dx\right) dy \\ =& 2 \int_0^1\frac{Li_3(y)}{y}dy + 2 \int_0^1\frac{Li_3(y)-Li_3(1)}{1-y}\>\overset{ibp}{dy} = 2Li_4(1) - Li_2^2(1) \end{align}

Substitute the results above for $J$ and $K$ into (1) to obtain $$I= 3Li_4(\frac12) + Li_4(1) - \frac12\left(Li_2(\frac12) + Li_2(1)\right)^2-2\ln^22 Li_2(\frac12)-\frac34\ln^42 $$

Quanto
  • 97,352
  • 4
    Nicely done! A minor suggestion: You should probably add \DeclareMathOperator{\Li}{Li} for better readability. – Hunter Aug 23 '21 at 08:45