What is the limit of $$\int_{\mathbb{R}}f(x)|\sin( \lambda x)| dx$$ for all integrable functions $f\colon\mathbb{R} \rightarrow \mathbb{C}$ when $|\lambda| \rightarrow \infty$?
I tried to use the Lemma of Riemann-Lebesgue. I want to prove that the integral of $|\sin(\lambda x)|$ is zero over one period when $|\lambda| \rightarrow \infty$.
I tried this: $$\int_{\mathbb{R}}\mathbb{1}_{[0,\pi]}\sin(\lambda x) dx= \frac{\cos(\lambda 0)-\cos(\lambda \pi)}{\lambda}\xrightarrow{|\lambda|\to\infty} 0$$
But then I doubted if this was indeed correct because $\lambda$ can be negative.
Can anybody help me to prove this?