1

Consider the differential equation $\cfrac{dy}{dx} = \cfrac{x^{3}-x}{1+e^{x}}$. How to find constant solution $y(x)$ and $\displaystyle\lim_{x \to \infty}y(x),$ where $y(x)$ is the solution such that $y(0) = \cfrac{1}{2}.$ I know if $y$ is a constant solution, then $\cfrac{dy}{dx} = 0$, which implies $$x^{3} - x=0~~\implies x=0,1,-1. $$ Now, how can I show that $\displaystyle\lim_{x \to \infty}y(x)=0~$ such that $y(0) = \cfrac{1}{2}.$

Alex K
  • 290
Manoj Kumar
  • 1,271

1 Answers1

1

Hint.

$$ |\cfrac{x^{3}-x}{1+e^{x}}|\le |(x^{3}-x)e^{-x}| $$

so we have

$$ -(x^{3}-x)e^{-x}\le \frac{dy}{dx}\le (x^{3}-x)e^{-x} $$

and

$$ \int (x^{3}-x)e^{-x} dx = -e^{-x} \left(x^3+3 x^2+5 x+5\right)+C $$

Cesareo
  • 33,252