In an attempt to express the $n-$th derivative of the rational function $f(x)=\frac{3x^2-6x+5}{x^3-5x^2+9x-5}$ ,
I split it into $\left( \frac{1+2i}{(x-2-i)} + \frac{1-2i}{(x-2+i)} + \frac{1}{(x-1)} \right)$ ,
then using $y= \frac{1}{ax+b} \Rightarrow y_{n}=\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$ I ended up with: $$(-1)^n n! [(1+2i)(x-2-i)^{-n-1}+(1-2i)(x-2+i)^{-n-1} +(x-1)^{-n-1}]$$
Now I don’t know how to get back to $\mathbb{\mathbb{R}}$ from $\mathbb{\mathbb{C}}$.
What I'd like to get is a form that doesn't make use of trigonometric functions but uses the binomial theorem.
Can anyone help me achieve this? Thank you so much in advance.