Using $$ \operatorname{Li}_3(-x) =-\frac{x}{2}\int_{0}^{1}\frac{\ln^2t}{1+tx} \text{d}t $$ It might be $$ -\frac{1}{2}\int_{0}^{1}\ln^2t \int_{1}^{\infty}\frac{x\ln(x-1)}{(1+tx)(1+x^2)}\text{d}x\text{d}t $$ Any suggestion is appreciated.
An integral relation between three integrals $$ \int_{0}^{1} \frac{\ln(x)^2\ln(1+x)^2}{1+x^2} \text{d}x -2\int_{0}^{1} \frac{\ln^3(x)\ln(1+x)}{1+x^2} \text{d}x +4\int_{1}^{\infty} \frac{\operatorname{Li}_3(-x)\ln(x-1)}{1+x^2}\text{d}x = -\frac{3\pi}{64}\zeta(3)\ln2-\frac{21\pi^5}{256} +\frac{\pi^3}{64}\ln^22 $$
MZIntegrate[PolyLog[3,-1/x]*Log[1/x-1]/(1+x^2), {x, 0, 1}]– pisco Aug 29 '21 at 14:22MultiZeta[{3,1,1},{1,-1,-1}]using my package. – pisco Nov 27 '21 at 23:16MZIntegrate. – pisco Nov 29 '21 at 12:10