Approximating the Tail
Using Stirling's Approximation, we get
$$
\frac1{2^n}\binom{n}{\left\lceil\frac{3n}{4}\right\rceil}\sim\left(\frac13\right)^{\frac{n\bmod4}4}\frac{(16/27)^{n/4}}{\sqrt{3\pi n/8}}\tag1
$$
Since $\frac{\binom{n}{k+1}}{\binom{n}{k}}=\frac{n-k}{k+1}\sim\frac13$ for $k\sim\frac{3n}4$, the sum of the tail will be asymptotic to a geometric series with ratio $\frac13$: that is, the sum is asymptotic to $\frac32=\frac1{1-\frac13}$ of the first term. Thus,
$$
\begin{align}
\frac1{2^n}\sum_{k=\lceil3n/4\rceil}^n\binom{n}{k}
&\sim\frac32\left(\frac13\right)^{\frac{n\bmod4}4}\frac{(16/27)^{n/4}}{\sqrt{3\pi n/8}}\tag{2a}\\[3pt]
&=\bbox[5px,border:2px solid #C0A000]{\left(\frac13\right)^{\frac{n\bmod4}4}\frac{(16/27)^{n/4}}{\sqrt{\pi n/6}}}\tag{2b}
\end{align}
$$
Here are some comparisons
$$
\begin{array}{r|l|l|l}
n\ \ &\quad\frac1{2^n}\sum\limits_{k=\left\lceil\frac{3n}4\right\rceil}^n\binom{n}{k}&\left(\frac13\right)^{\frac{n\bmod4}4}\frac{(16/27)^{n/4}}{\sqrt{\pi n/6}}&\quad\Delta\\\hline
100&2.818141\times10^{-7}&2.880091\times10^{-7}&2.198\%\\
200&4.196510\times10^{-13}&4.244208\times10^{-13}&1.136\%\\
300&7.167016\times10^{-19}&7.221983\times10^{-19}&0.766\%\\
400&1.295943\times10^{-24}&1.303444\times10^{-24}&0.579\%\\
500&2.418405\times10^{-30}&2.429646\times10^{-30}&0.465\%\\
1000&6.738128\times10^{-59}&6.753911\times10^{-59}&0.234\%\\
1001&4.487638\times10^{-59}&4.500358\times10^{-59}&0.283\%\\
1002&2.987810\times10^{-59}&2.998741\times10^{-59}&0.366\%\\
1003&1.988589\times10^{-59}&1.998164\times10^{-59}&0.481\%
\end{array}
$$
Approximating with the Normal Distribution
As shown in this answer
$$
\frac1{\sqrt{2\pi}}\int_x^\infty e^{-t^2/2}\,\mathrm{d}t
\sim\frac1{\sqrt{2\pi}\,x}\,e^{-x^2/2}\tag3
$$
which adjusted for a standard deviation of $\sqrt{n/4}$ gives
$$
\frac1{\sqrt{\pi n/2}}\int_x^\infty e^{-2t^2/n}\,\mathrm{d}t
\sim\frac{\sqrt{n/4}}{\sqrt{2\pi}\,x}\,e^{-2x^2/n}\tag4
$$
Using $(4)$ to estimate the probability of being at least $n/4$ above the mean gives
$$
\frac1{\sqrt{\pi n/2}}\,e^{-n/8}\tag5
$$
Since $\frac{16}{27}\lt e^{-1/2}$, as $n\to\infty$, the binomial tail sum from $(2)$ decays exponentially faster than the tail of the normal distribution from $(5)$ does.
The Central Limit Theorem says that
$$
\lim_{n\to\infty}\sup_{\lambda\in\mathbb{R}}\left[P\!\left(\sqrt{n}\left(\bar{X}_n-\mu\right)\gt\lambda\sigma\right)-\frac1{\sqrt{2\pi}}\int_\lambda^\infty e^{-t^2/2}\,\mathrm{d}t\right]=0\tag6
$$
The Berry-Esseen Theorem gives a bound on how the limit in $(6)$ tends to $0$:
$$
\sup_{\lambda\in\mathbb{R}}\left|\,P\!\left(\sqrt{n}\left(\bar{X}_n-\mu\right)\gt\lambda\sigma\right)-\frac1{\sqrt{2\pi}}\int_\lambda^\infty e^{-t^2/2}\,\mathrm{d}t\,\right|\le\frac12\frac\rho{\sigma^3\sqrt{n}}\tag7
$$
where $\rho=\frac18$ and $\sigma=\frac12$ for fair coin flipping (the constant $\frac12$ can actually be improved, but we'll use it for simplicity).
However, the bound in $(7)$ is far from being sharp enough to compare probabilities as small as those in $(2)$ and $(5)$. These theorems are better for approximating tails above a fixed number of standard deviations. In the case given, the number of standard deviations above the mean is $\sqrt{n/4}$, not a fixed number.
Details About $\bf{(1)}$
If $n\bmod4=0$, then Stirling's Approximation says
$$
\begin{align}
\frac1{2^n}\binom{n}{\left\lceil\frac{3n}{4}\right\rceil}
&=\frac1{2^n}\binom{n}{\frac{3n}{4}}\tag{8a}\\[6pt]
&=\frac1{2^n}\frac{n!}{\frac{3n}4!\,\frac{n}4!}\tag{8b}\\
&\sim\frac1{2^n}\frac{\sqrt{2\pi n}\frac{n^n}{e^n}}{\sqrt{3\pi n/2}\frac{(3n/4)^{3n/4}}{e^{3n/4}}\,\sqrt{\pi n/2}\frac{(n/4)^{n/4}}{e^{n/4}}}\tag{8c}\\
&=\frac1{2^n}\frac1{\sqrt{3\pi n/8}\,(3/4)^{3n/4}\,(1/4)^{n/4}}\tag{8d}\\[6pt]
&=\frac{(16/27)^{n/4}}{\sqrt{3\pi n/8}}\tag{8e}
\end{align}
$$
Explanation:
$\text{(8a)}$: $\frac{3n}4\in\mathbb{Z}$
$\text{(8b)}$: $\binom{n}{k}=\frac{n!}{k!\,(n-k)!}$
$\text{(8c)}$: apply Stirling's Approximation three times
$\text{(8d)}$: cancel
$\text{(8e)}$: simplify
Furthermore,
$$
\begin{align}
\frac1{2^{n+1}}\binom{n+1}{\left\lceil\vphantom{\frac{3n}4}\right.\!\frac{3(n+1)}4\left.\vphantom{\frac{3n}4}\right\rceil}
&=\frac1{2^{n+1}}\binom{n+1}{\frac{3n}4+1}\tag{9a}\\
&=\frac12\frac{n+1}{\frac{3n}4+1}\frac1{2^n}\binom{n}{\frac{3n}4}\tag{9b}\\
&\sim\frac23\frac{(16/27)^{n/4}}{\sqrt{3\pi n/8}}\tag{9c}\\
&\sim\left(\frac13\right)^{1/4}\frac{(16/27)^{(n+1)/4}}{\sqrt{3\pi(n+1)/8}}\tag{9d}
\end{align}
$$
Explanation:
$\text{(9a)}$: $\left\lceil\vphantom{\frac{3n}4}\right.\!\frac{3(n+1)}4\left.\vphantom{\frac{3n}4}\right\rceil=\frac{3n}4+1$
$\text{(9b)}$: $\binom{n+1}{k+1}=\frac{n+1}{k+1}\binom{n}{k}$
$\text{(9c)}$: $\frac12\frac{n+1}{\frac{3n}4+1}\sim\frac23$ and apply $(8)$
$\text{(9d)}$: $\sqrt{n+1}\sim\sqrt{n}$
and
$$
\begin{align}
\frac1{2^{n+2}}\binom{n+2}{\left\lceil\vphantom{\frac{3n}4}\right.\!\frac{3(n+2)}4\left.\vphantom{\frac{3n}4}\right\rceil}
&=\frac1{2^{n+2}}\binom{n+2}{\frac{3n}4+2}\tag{10a}\\
&=\frac12\frac{n+2}{\frac{3n}4+2}\frac12\frac{n+1}{\frac{3n}4+1}\frac1{2^n}\binom{n}{\frac{3n}4}\tag{10b}\\
&\sim\frac49\frac{(16/27)^{n/4}}{\sqrt{3\pi n/8}}\tag{10c}\\
&\sim\left(\frac13\right)^{2/4}\frac{(16/27)^{(n+2)/4}}{\sqrt{3\pi(n+2)/8}}\tag{10d}
\end{align}
$$
Explanation:
$\text{(10a)}$: $\left\lceil\vphantom{\frac{3n}4}\right.\!\frac{3(n+2)}4\left.\vphantom{\frac{3n}4}\right\rceil=\frac{3n}4+2$
$\text{(10b)}$: $\binom{n+2}{k+2}=\frac{n+2}{k+2}\frac{n+1}{k+1}\binom{n}{k}$
$\text{(10c)}$: $\frac12\frac{n+2}{\frac{3n}4+2}\frac12\frac{n+1}{\frac{3n}4+1}\sim\frac49$ and apply $(8)$
$\text{(10d)}$: $\sqrt{n+2}\sim\sqrt{n}$
and
$$
\begin{align}
\frac1{2^{n+3}}\binom{n+3}{\left\lceil\vphantom{\frac{3n}4}\right.\!\frac{3(n+3)}4\left.\vphantom{\frac{3n}4}\right\rceil}
&=\frac1{2^{n+3}}\binom{n+3}{\frac{3n}4+3}\tag{11a}\\
&=\frac12\frac{n+3}{\frac{3n}4+3}\frac12\frac{n+2}{\frac{3n}4+2}\frac12\frac{n+1}{\frac{3n}4+1}\frac1{2^n}\binom{n}{\frac{3n}4}\tag{11b}\\
&\sim\frac8{27}\frac{(16/27)^{n/4}}{\sqrt{3\pi n/8}}\tag{11c}\\
&\sim\left(\frac13\right)^{3/4}\frac{(16/27)^{(n+3)/4}}{\sqrt{3\pi(n+3)/8}}\tag{11d}
\end{align}
$$
Explanation:
$\text{(11a)}$: $\left\lceil\vphantom{\frac{3n}4}\right.\!\frac{3(n+3)}4\left.\vphantom{\frac{3n}4}\right\rceil=\frac{3n}4+3$
$\text{(11b)}$: $\binom{n+3}{k+3}=\frac{n+3}{k+3}\frac{n+2}{k+2}\frac{n+1}{k+1}\binom{n}{k}$
$\text{(11c)}$: $\frac12\frac{n+3}{\frac{3n}4+3}\frac12\frac{n+2}{\frac{3n}4+2}\frac12\frac{n+1}{\frac{3n}4+1}\sim\frac8{27}$ and apply $(8)$
$\text{(11d)}$: $\sqrt{n+3}\sim\sqrt{n}$
Putting together $\overset{\underbrace{0\bmod4}}{(8)}$, $\overset{\underbrace{1\bmod4}}{(9)}$, $\overset{\underbrace{2\bmod4}}{(10)}$, and $\overset{\underbrace{3\bmod4}}{(11)}$, we get $(1)$.
n <- 200; pbinom(1/4*n,n,1/2); pnorm(1/4*n+1/2,n/2,sqrt(n/4))gives me4.19651e-13and1.276554e-12in R, a factor of $3$ different. Usen <- 1000and the factor is over $300$ – Henry Sep 09 '21 at 16:08