I tried like this:
Let $y=a^{2x}-2\Rightarrow a^{2x}=y+2\Rightarrow 2x\ln a=\ln\left(y+2\right)\Rightarrow x=\dfrac{\ln\left(y+2\right)}{2\ln a}$
Also if $x\longrightarrow0,$ then $y\longrightarrow a^{2(0)}-2=-1.$
But we I put each and every this assumption in the given expression, then I get hanged due to $x^x.$ How to use algebra or any other easy procedure to show that $\displaystyle\lim_{x\rightarrow0}\dfrac{a^{2x}-2}{x^x}=-1$.