1

Question:

Show that the product of the lengths of the perpendiculars drawn from the points $(\pm c,0)$ to the straight line $bx\cos\theta+ay\sin\theta-ab=0$ is $b^2$ when $a^2=b^2+c^2$.


My attempt:

Let, the length of the perpendicular on drawn upon $bx\cos\theta+ay\sin\theta-ab=0$ from $(c,0)$ is $d_1$ and the length of that drawn upon the same from $(-c,0)$ is $d_2$. Now,

$$d_1=\frac{|bc\cos\theta+0-ab|}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$$

$$\implies d_1=\frac{|bc\cos\theta-ab|}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$$

Again,

$$d_2=\frac{|-bc\cos\theta-ab|}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$$

Now,

$$d_1d_2=\frac{|-(bc\cos\theta-ab)(bc\cos\theta+ab)|}{{b^2\cos^2\theta+a^2\sin^2\theta}}$$

$$\implies d_1d_2=\frac{|a^2b^2-b^2c^2\cos^2\theta|}{{b^2\cos^2\theta+a^2\sin^2\theta}}$$

$$\implies d_1d_2=\frac{|a^2b^2-b^2c^2\cos^2\theta|}{{b^2\cos^2\theta+a^2(1-\cos^2\theta)}}$$

$$\implies d_1d_2=\frac{|a^2b^2-b^2c^2\cos^2\theta|}{{b^2\cos^2\theta+a^2-a^2\cos^2\theta}}$$

$$\implies d_1d_2=\frac{|a^2b^2-b^2c^2\cos^2\theta|}{a^2-(a^2-b^2)\cos^2\theta}$$

$$\implies d_1d_2=|\frac{b^2(a^2-c^2\cos^2\theta)}{a^2-(a^2-b^2)\cos^2\theta}|$$ [$a^2-(a^2-b^2)\cos^2\theta$ is positive, so bringing it inside the modulus sign doesn't make a difference]

$$\implies d_1d_2=|\frac{b^2(a^2-(a^2-b^2)\cos^2\theta)}{(a^2-(a^2-b^2)\cos^2\theta)}|$$ [Given, $a^2=b^2+c^2\implies c^2=a^2-b^2$]

$$d_1d_2=|b^2|$$(shown?)

The question asked me to show that $d_1d_2=b^2$, but I showed them that $d_1d_2=|b^2|$. So, is there something wrong with my process, or is there something wrong with the question?

Jean Marie
  • 81,803

2 Answers2

3

Comment

Btw, the product of the length of the perpendiculars drawn from the focal points of an ellipse $(\pm c,0)$ to the tangent straight line $bx\cos\theta+ay\sin\theta-ab=0$ is $b^2$ when $a^2=b^2+c^2$.

enter image description here

Can be also derived from Newton's ellipse canonical form.

Narasimham
  • 40,495
2

Your answer is correct. Note that the absolute value of a real number $x$ is defined by

$$|x|=\begin{cases}x,\space\text{if}x\geq0 \\ -x,\space\text{if} x<0\end{cases}$$

and since $b^2\geq 0$ for all $b\in\mathbb R$ we have $|b^2|=b^2$.

Alessio K
  • 10,599