3

Without loss of generality, we can assume $x\ge y$.

  • If $x\ge y \ge 1$, then $$(x^y+y^x)\left(\frac{1}{x}+\frac{1}{y}\right)\ge (x+y)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4.$$
  • If $1\ge x\ge y>0$, then $$x^y=\frac{1}{\left(\frac{1}{x}\right)^{y}}=\frac{1}{\left(1+\frac{1-x}{x}\right)^y}\ge \frac{1}{1+y\left(\frac{1-x}{x}\right)}=\frac{x}{x+y-xy},$$ and similarily $$y^x\ge\frac{y}{x+y-xy}.$$ Hence $$(x^y+y^x)\left(\frac{1}{x}+\frac{1}{y}\right)\ge \frac{\left(\frac{1}{x}+\frac{1}{y}\right)^2}{\frac{1}{x}+\frac{1}{y}+1}\ge 4.$$
  • If $x\ge 1 \ge y>0$, how to go on?
mengdie1982
  • 13,840
  • 1
  • 14
  • 39
  • 2
    Where does the problem come from? The same question has been asked yesterday: https://math.stackexchange.com/q/4268111/42969. – Martin R Oct 06 '21 at 07:12
  • I see it on a Chinese website https://www.zhihu.com/question/489824366. Someone gave an incomplete proof . @MartinR – mengdie1982 Oct 06 '21 at 07:19

0 Answers0