Edit: A friend of mine used a contour integral to solve this problem and his final answer matches with mine. It seems that Wolphram´s is incorrect
I saw the following integral here and went to proof it.
$$\int_0^\infty \frac{x \ln(1+x^2)}{e^{2 \pi x}+1}\,dx=\frac{19}{24}-\frac{23}{24}\ln 2-\frac{\ln A}{2}$$
I started using the following identity
$$\frac{1}{e^{2\pi x}+1}=\frac{1}{e^{2\pi x}-1}-\frac{2}{e^{4\pi x}-1} \tag{1}$$
To rewrite the integral as following
$$\int_0^\infty \frac{x \ln(1+x^2)}{e^{2 \pi x}+1}\,dx=\int_0^\infty\frac{x \ln(z^2+x^2)}{e^{2 \pi x}-1}\,dx-2\int_0^\infty\frac{x \ln(z^2+x^2)}{e^{4\pi x}-1}\,dx \tag{2}$$
In my previous post I established the value of the first integral of the R.H.S. of $(2)$
$$\int_{0}^{\infty} \frac{x \ln \left(1+x^{2}\right)}{e^{2 \pi x}-1} d x=\zeta^{\prime}(-1)+\frac12\ln 2 +\frac12 \ln \pi-\frac{3}{4} \tag{3}$$
So it remains to evaluate
$$\int_0^\infty\frac{x \ln(1+x^2)}{e^{4\pi x}-1}\,dx$$
To this end, I followed the same procedure I used in the previous post. Consider the integral
$$J(z)=\int_0^\infty\frac{x \ln(z^2+x^2)}{e^{4\pi x}-1}\,dx \tag{4}$$
And differentiate it w.r. to $z$ to get
$$J^{\prime}(z)=\int_0^\infty\frac{2zx }{(z^2+x^2)(e^{4\pi x}-1)}\,dx \tag{5}$$
Then comparing it with Binet´s formula
$$\int_0^\infty\frac{x }{(z^2+x^2)(e^{2\pi x}-1)}\,dx=\frac{\log(z)}{2}-\frac{\psi(z)}{2}-\frac{1}{4z} \tag{6}$$
And after a change in parameter and a change of variable we find that
$$\int_0^\infty\frac{2sx }{(s^2+x^2)(e^{4\pi x}-1)}\,dx=s \ln(2s)-s\psi(2s)-\frac{1}{4} \tag{7}$$
Now, integrate $(7)$ with respect to $s$ from $0$ to $z$ and then let $z \to 1$, I got
$$\int_0^\infty\frac{x \ln(1+x^2)}{e^{4\pi x}-1}\,dx=\frac{\ln \pi}{4}-\frac{36}{48}+\frac{35}{48} \ln2+\frac14 \zeta^{\prime}(-1) \tag{7}$$
Since I could not find the answer of this integral nowhere, I went to Wolfram Alpha to see whether it matches with it´s solution, but it doesn´t! Nevertheless, I sticked to it, and together with $(3)$ I plugged it´s values in $(2)$.
To get the final answer
$$\begin{aligned} \int_0^\infty \frac{x \ln(1+x^2)}{e^{2 \pi x}+1}\,dx&=\zeta^{\prime}(-1)+\frac12\ln 2 +\frac12 \ln \pi-\frac{3}{4}-2\left(\frac{\ln \pi}{4}-\frac{36}{48}+\frac{35}{48}\ln2+\frac14 \zeta^{\prime}(-1) \right)\\ &=\frac12\zeta^{\prime}(-1)-\frac{23}{24}\ln 2+\frac{18}{24}\\ &=\frac12\left(\frac{1}{12}-\ln A \right)-\frac{23}{24}\ln 2+\frac{18}{24}\\ &=\frac{19}{24}-\frac{23}{24}\ln 2-\frac{\ln A}{2} \qquad \blacksquare \end{aligned} $$
Now, this answer matches with the answer from where I saw the integral, but it does not match Wolfram Alpha´s answer.
The obvious question is: Which one is correct??
