For $n=1,2,3,\cdots $, let $f_n(x)=\frac{2nx^{n-1}}{1+x}$ for $x\in [0,1]$ then $\lim_{n\to \infty}\int_0^1f_n(x)=?$
My attempt:
Since, $0\leq x\leq 1$, so $1\leq x+1 \leq 2 \implies \frac{1}{2} \leq \frac{1}{x+1} \leq 1$.
Now, $\frac{1}{2}2nx^{n-1}\leq f_n(x) \leq 2nx^{n-1}$
Integrating we get,
$1\leq \int_0^1f_n(x)\leq 2$
Taking $\lim_{n\to \infty}$ we get
$1\leq \lim_{n\to \infty} \int_0^1f_n(x)\leq 2$
But I am stuck with the actual value of the limit. Can anyone please help me? Thanks in advance.
Thank you.
– Aritra Oct 11 '21 at 18:50