I need to evaluate
$$\int_{1}^{\infty}
\frac{\displaystyle{\operatorname{Re}\left (
\operatorname{Li}_3\left ( \frac{1+x}{2} \right ) \right )
\ln^2\left ( \frac{1+x}{2} \right ) }}{x(1+x^2)} \text{d}x.$$
$\operatorname{Li}_n(.)$ denotes the "Polylogarithms".
Numerical tests derived
$$\int_{1}^{\infty}
\frac{\displaystyle{\operatorname{Re}\left (
\operatorname{Li}_3\left ( \frac{1+x}{2} \right ) \right )
\ln^2\left ( \frac{1+x}{2} \right ) }}{x(1+x^2)} \text{d}x
=\operatorname{Im}\left[\operatorname{Li}_3\left ( \frac{1+i}{2} \right )
\right]^2+\frac{1911}{4096}\zeta(3)^2 +\frac{413}{1536}\zeta(3)\ln^32
-\frac{721}{6144}\pi^2\zeta(3)\ln2-\frac{41}{1536}\pi^2\ln^42
+\frac{77}{12288}\pi^4\ln^22+\frac{7}{256}\ln^62.$$
I checked this $$\int_{1}^{\infty} \frac{\displaystyle{\operatorname{Re}\left ( \operatorname{Li}_4\left ( \frac{1+x}{2} \right ) \right ) \ln^3\left ( \frac{1+x}{2} \right ) }}{x(1+x^2)} \text{d}x =3\operatorname{Im} \left [ \operatorname{Li}_4\left ( \frac{1+i}{2} \right ) \right ]^2 -\frac{343\pi^4\operatorname{Li}_4\left ( \frac{1}{2} \right ) }{49152} +\frac{693\operatorname{Li}_4\left ( \frac{1}{2} \right )^2}{256} -\frac{5\operatorname{Li}_4\left ( \frac{1}{2} \right )}{256}\ln^42 +\frac{25\pi^2\operatorname{Li}_4\left ( \frac{1}{2} \right )}{2048}\ln^22 -\frac{117649\pi^8}{2831155200}-\frac{\ln^82}{3072} +\frac{5\pi^2\ln^62}{12288}-\frac{1061\pi^4\ln^42}{2949120} +\frac{343\pi^6\ln^22}{2359296}.$$
MZIntegrate, which will be released soon. But I think an more elementary way is possible judging on its simple result. – pisco Oct 16 '21 at 10:28