Prove that $f: \mathbb{R^3} \to \mathbb{R^3}, f(x_1,x_2,x_3) = (x_1+x_2+x_3, 2x_1-3x_2+x_3, 2x_1+x_2-x_3)$ is continuous on $\mathbb{R^3}$ with the Euclidean norm.
Here is my attempt:
It suffices to show that $f$ is continuous at the zero vector $(0,0,0)$. Let $\varepsilon >0$, choose $\delta = $ (tbd) and suppose $||(x_1,x_2,x_3) - (0,0,0)|| = ||(x_1,x_2,x_3)|| < \delta$. Then
$$||f(x_1,x_2,x_3) - f(0,0,0)|| = ||(x_1+x_2+x_3, 2x_1-3x_2+x_3, 2x_1+x_2-x_3) - (0,0,0)|| = ||(x_1+x_2+x_3, 2x_1-3x_2+x_3, 2x_1+x_2-x_3)|| < \varepsilon.$$
I got stuck here. Any hints on how i could use the assumption $||(x_1,x_2,x_3)|| < \delta$?