Solve $x^3-6x^2+2x+3=0$ for $x$
Here's my attempt at solving it via Cardano's Method as it applies to the general cubic:
$$x^3-6x^2+2x+3=0$$ \begin{align*}y&=x+\frac{b}{3a} \\ y&= x+\frac{-6}{3} \\ y &= x-2 \\ y+2&=x\end{align*} Substitute $x$ for $y+2$ $$(y+2)^3-6(y+2)^2+2(y+2)+3=0$$ Expand out $$y^3+6y^2+12y+8-6y^2-24y-24+2y+4+3=0$$ Add like terms to get the depressed cubic $$y^3-10y-9=0$$ $$y=u+v$$ Substitute $y$ for $u+v$ $$y^3=(u+v)^3$$ \begin{align*}(u+v)^3 &= u^3+3u^2v+3uv^2+v^3 \\ &= u^3+v^3+3uv(u+v) \\ &= u^3+v^3+3uvy\end{align*} $$y^3=u^3+v^3+3uvy$$ Make the right side equal to $0$ to get the depressed cubic in terms of $u$, $v$, and $y$ $$y^3-3uvy-(u^3+v^3)=0$$ \begin{align*}-3uv &= -10 & u^3+v^3 &= 9 & uv &=\frac{10}{3}\end{align*} $$u^3v^3=\frac{10^3}{3^3}=\frac{1000}{27}$$ Factored form of desired quadratic $$(t-u^3)(t-v^3)=0$$ Expand out the quadratic \begin{align*}t^2-(u^3+v^3)t+u^3v^3 &= 0 \\ t^2-9t+\frac{1000}{27} &= 0\end{align*} Can't factor quadratic, use the quadratic formula to solve for $t$ $$t=\frac{9\pm \sqrt{81-\frac{4000}{108}}}{2}$$ Simplify the square root $$t=\frac{9 \pm \frac{\sqrt{3561}}{9}}{2}$$ Simplify the fraction $$t=\frac{81 \pm \sqrt{3561}}{18}$$ Take cube root of the entire fraction to get $u$ and $v$ \begin{align*}u &= \sqrt[3]{\frac{81 + \sqrt{3561}}{18}} \\ v &=\sqrt[3]{\frac{81 - \sqrt{3561}}{18}}\end{align*} Simplify root expression \begin{align*}u &= \frac{\sqrt[3]{972+12\sqrt{3561}}}{6} \\ v &= \frac{\sqrt[3]{972-12\sqrt{3561}}}{6} \\\\ y &= \frac{\sqrt[3]{972+12\sqrt{3561}}+\sqrt[3]{972-12\sqrt{3561}}}{6} \\\\ x &= \frac{\sqrt[3]{972+12\sqrt{3561}}+\sqrt[3]{972-12\sqrt{3561}}}{6}+2\end{align*}
Now, to check that I got this wrong, I checked for the roots of the original cubic using a calculator, and this is what I should have gotten for $x$:
$$x= \left\{1, \frac{5+\sqrt{37}}{2}, \frac{5-\sqrt{37}}{2}\right\}$$
But instead, I got a whole mess of cube roots and square roots, so I definitely made a mistake somewhere trying to solve this cubic using Cardano's Method. So where is that mistake that led to the whole mess of $n$th roots?