$$I = \int_0^{\frac {\pi}{2}}\frac{\cos{\left((1-2n)\sin^{-1}\left(\sqrt x\sin(\phi)\right)\right)}}{\sqrt{(1-x\sin^2(\phi))}}d\phi$$
$$\begin{align*} (1-x^2)^{-\frac 1{2}}\cos(2n\sin^{-1}x)
& = _2F_1(0.5 + n, 0.5-n;0.5;x^2)\\
& = \text{let, }2n =1-2n \text{ & } x = \frac {\sin\phi}{\sqrt 2} \text {integrating both sides w.r.t } \phi \text{ over } \in [0, \pi/2]\\
\int_0^{\frac {\pi}{2}} \frac {\cos{\left((1-2n)(\sin^{-1}\left(\frac {\sin\phi}-{\sqrt 2}\right)\right)}}{\sqrt{(1-\frac {\sin^2\phi}{2})}}d\phi
&=\int_0^{\frac {\pi}{2}} {_2F_1(1-n,n;0.5;\frac{\sin^2\phi}{2})}d\phi\\
& =\sum_{k\geq0}\frac {(1-n)_k(n)_k}{(0.5)_kk!2^k}\int_0^{\frac {\pi}{2}}{\sin^{2k}\phi}d\phi\\
& =\sum_{k\geq0}\frac {(1-n)_k(n)_k}{(0.5)_kk!2^k}\beta(0.5,k+0.5)\\
& =\sum_{k\geq0}\frac {(1-n)_k(n)_k}{\color{red}{(0.5)_k}k!2^k}\frac{\sqrt\pi\times \color{red}{\Gamma{(k+0.5)}}}{2\Gamma{(k+1)}}\\
& =\frac {\sqrt\pi}{2}\sum_{k\geq0} {\frac {(1-n)_k(n)_k}{(1)_k}\frac {(0.5)_k}{k!}}\\
& = \frac {\sqrt\pi}{2} {_2F_1}(1-n,n;1;0.5)\\
\end{align*}$$
You can use: $$ {_2F_1}(a, 1-a;b;0.5) = \frac {2^{1-b}\sqrt\pi \Gamma(b)}{\Gamma{(\frac{a+b}{2})}\Gamma{(\frac{b-a+1}{2})}}$$
(I don't know what this Identity is called nor do I remember where I read these all)
Now, Where I found that very first formula and all is other part of the story(I found that by differentiating 0.5sin(2narcsinx)/n = F(0.5+n,0.5-n;0.5;x^2)
If any typo let it be blamed in the name of Dyslexia
Cheers:))