$\sum _{k=1}^n\:\left(\cos\left(\frac{2\cdot k\cdot \pi }{n}\right)-2\:+\:i\cdot \sin\left(\frac{2\cdot k\cdot \pi }{n}\right)\right)$
Normally the general factor is $a(n)=\cos\left(\frac{2k\pi }{n}\right)-2+i\cdot \sin\left(\frac{2k\pi }{n}\right)$
All I was able to do to the sum above was rewrite it as:
$\sum _{k=1}^n\:\left(\cos\left(\frac{2k\pi }{n}\right)\right)\:+\:\sum _{k=1}^n\left(i\cdot \sin\left(\frac{2k\pi }{n}\right)\right)\: - 2n$
Expecting the sums to cancel each other out and a result of something around -2n but not sure how to do that.
