4

I found the following integral and I am stuck with the procedure to find the given closed form in terms of the complete Gamma function

$$\displaystyle I= \int_{0}^{\infty} \frac{dx}{\sqrt{112+21x^2+x^4}} = \frac{\Gamma\left(\frac{1}{7}\right)\Gamma\left(\frac{2}{7}\right)\Gamma\left(\frac{4}{7}\right)}{8\pi\sqrt{7}}.$$

I know that this integral is related to the complete elliptic integral of the first kind throught the following integral representation:

$$K(p) = \int_{0}^{\infty} \frac{dt}{\sqrt{(1+t^2)(1+q^2t^2)}}$$

where $p$ is the modulus, $q$ is the complementary modulus:

$$p^2+q^2=1.$$

However, this is not a normal elliptic integral as we will see.

If we factorize the polynomial in the radicand we found that

$$112+21x^2+x^4 = \left(x^2+\frac{21}{2}+i\frac{\sqrt{7}}{2}\right)\left(x^2+\frac{21}{2}-i\frac{\sqrt{7}}{2}\right).$$

For simplicity, if we denote

$$ a_{1} = \frac{21}{2}+i\frac{\sqrt{7}}{2} \quad a_{2}=\frac{21}{2}-i\frac{\sqrt{7}}{2}$$

then \begin{align*}I & = \int_{0}^{\infty} \frac{dx}{\sqrt{112+21x^2+x^4}} = \int_{0}^{\infty} \frac{dx}{\sqrt{(x^2+a_{1})(x^2+a_{2})}} \\ & = \frac{1}{\sqrt{a_{1}a_{2}}} \int_{0}^{\infty} \frac{dx}{\sqrt{\left(\frac{x^2}{a_{1}}+1\right)(\frac{x^2}{a_{2}}+1)}}.\end{align*}

Making the substitution $\displaystyle w^2 = \frac{x^2}{a_{1}}$

$$ I = \frac{1}{\sqrt{a_{1}a_{2}}} \int_{0}^{\infty} \frac{dw}{\sqrt{\left(w^2+1\right)(\frac{a_{1}}{a_{2}}w^2+1)}}.$$

If now we make the substitution $\displaystyle \theta = \arctan(w)$ and putting the values of $a_{1}$ and $a_{2}$ we recover the Legendre form of the complete elliptic integral of the first kind:

\begin{align*} I & = \frac{\sqrt{\frac{21}{2}+i\frac{\sqrt{7}}{2}}}{4\sqrt{7}} \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-\left(\frac{1}{32}-i\frac{3\sqrt{7}}{32}\right)\sin^2\theta}} \\ & = \frac{1}{4}\sqrt{\frac{1}{7}\left(\frac{21}{2}+i\frac{\sqrt{7}}{2}\right)}K\left(\sqrt{\frac{1}{32}-i\frac{3\sqrt{7}}{32}}\right).\end{align*}

The expression in the right hand is numerically identical to the solution in terms of the Gamma function. So, I tried using the hypergeometric representation of the elliptic integral to try to obtain the closed form in terms of Gamma functions:

$$K\left(\sqrt{\frac{1}{32}-i\frac{3\sqrt{7}}{32}}\right) = \frac{\pi}{2}{}_{2}F_{1}\left(\frac{1}{2},\frac{1}{2};1;\frac{1}{32}-i\frac{3\sqrt{7}}{32}\right).$$

Using the folowing quadratic transformation

$$F\left({a,b\atop 2b};z\right)=\left(1-z\right)^{-\frac{a}{2}}F\left({\frac{1% }{2}a,b-\tfrac{1}{2}a\atop b+\tfrac{1}{2}};\frac{z^{2}}{4z-4}\right),$$

I get rid of the imaginary unit in the argument of ${}_{2}F_{1}$: \begin{align*} I & = \frac{1}{4}\sqrt{\frac{1}{7}\left(\frac{21}{2}+i\frac{\sqrt{7}}{2}\right)}\frac{\pi}{2}{}_{2}F_{1}\left(\frac{1}{2},\frac{1}{2};1;\frac{1}{32}-i\frac{3\sqrt{7}}{32}\right) \\ & =\frac{\pi}{8}\frac{\sqrt{\frac{1}{7}\left(\frac{21}{2}+i\frac{\sqrt{7}}{2}\right)}}{\left(\frac{1}{32}-i\frac{3\sqrt{7}}{32}\right)^{\frac{1}{4}}} {}_{2}F_{1}\left(\frac{1}{4},\frac{1}{4};1;\frac{1}{64}\right).\end{align*}

Wolfram evaluates

$$ {}_{2}F_{1}\left(\frac{1}{4},\frac{1}{4};1;\frac{1}{64}\right) = \frac{7^{\frac{3}{4}}\Gamma\left(\frac{2}{7}\right)\Gamma\left(\frac{4}{7}\right)\Gamma\left(\frac{8}{7}\right)}{2\pi^2}.$$

But I do not know how to obtain this expression nor how to proceed further. I will be very grateful for your help.

  • The number multiplying your final ${}_2 F_1$ is not real. – Gary Nov 06 '21 at 03:20
  • @Gary sorry, I get rid of the imaginary unit in the argument of ${}{2}F{1}(a,b;c;z)$ – Bertrand07 Nov 06 '21 at 03:22
  • Isn't it a strange way to make the substitutions $\omega^2=x^2/\alpha_1$? – markvs Nov 06 '21 at 03:40
  • 1
    I noticed that this question was previously solved using a Landen transformation. Thank you all for your help. https://math.stackexchange.com/questions/2407578/how-to-show-that-int-0-infty-frac1-sqrt-tt221t112-dt-frac14 – Bertrand07 Nov 06 '21 at 03:44

0 Answers0