Answer to Question 1:
Integration by parts yields:
\begin{equation}
\begin{split}
1 &= \int_{-\infty}^{\infty}|f(x)|^{2}dx = x|f(x)|^{2}\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty}x\frac{d}{dx}|f(x)|^{2} \\
&= -\int_{-\infty}^{\infty}x\frac{d}{dx}|f(x)|^{2}\text{, since }f \in \mathcal{S}(\mathbb{R}) \\
&= -\int_{-\infty}^{\infty}x(f'(x)\overline{f(x)} + f(x)\overline{f'(x)})dx\text{, by how }|f(x)|^{2} = f(x)\overline{f(x)} \\
\Rightarrow 1 &\leq 2\int_{-\infty}^{\infty}|x||f'(x)||f(x)|dx \\
&\leq 2\left(\int_{-\infty}^{\infty}x^{2}|f(x)|^{2}dx\right)^{1/2}\left(\int_{-\infty}^{\infty}|f'(x)|^{2}dx\right)^{1/2}\text{, by Cauchy-Schwarz} \\
&= 2\left(\int_{-\infty}^{\infty}x^{2}|f(x)|^{2}dx\right)^{1/2}\left(\int_{-\infty}^{\infty}k^{2}|\hat{f}(k)|^{2}dk\right)^{1/2};
\end{split}
\end{equation}
The last equality follows from Plancherel's theorem and the Fourier transform of a function's derivative:
$$\int_{-\infty}^{\infty}|f'(x)|^{2}dx = \int_{-\infty}^{\infty}|\hat{f'}(k)|^{2}dk = \int_{-\infty}^{\infty}k^{2}|\hat{f}(k)|^{2}dk$$
The result follows.
Answer to Question 2:
For equality to hold in the Cauchy-Schwarz inequality $\langle f, g \rangle_{L^{2}(\mathbb{R})} \leq ||f||_{L^{2}(\mathbb{R})}||g||_{L^{2}(\mathbb{R})}$, we must have $g(x) = Cf(x)$ a.e., for some $C \in \mathbb{C}$. Thus, for equality to hold in our above result, we must have $f'(x) = Cxf(x)$, for some $C \in \mathbb{C}$. Then:
$$\frac{f'(x)}{f(x)} = Cx \Rightarrow \int \frac{f'(x)}{f(x)} dx = C\int x dx \Rightarrow \text{ln}[f(x)] = \frac{C}{2}x^{2} + D\text{, for some }D\in \mathbb{C} $$
$$\Rightarrow f(x) = C_{1}e^{Bx^{2}}\text{, for some }C_{1}, B \in \mathbb{C}$$
In order to satisfy our assumption that $f \in \mathcal{S}(\mathbb{R})$, we must have $B = -C_{2}$, for some $C_{2} > 0$. Take $\sigma = \frac{1}{\sqrt{C_{2}}}$. Furthermore, we must have $\int_{-\infty}^{\infty}|f(x)|^{2}dx = 1$, so:
$$1 = \int_{-\infty}^{\infty}|f(x)|^{2}dx = |C_{1}|^{2}\int_{-\infty}^{\infty}e^{-2C_{2}x^{2}}dx = \frac{|C_{1}|^{2}}{\sqrt{4C_{2}}}\int_{-\infty}^{\infty}e^{-\frac{x^{2}}{2}}dx = |C_{1}|^{2}\sqrt{\frac{\pi}{2C_{2}}}$$
$$\Rightarrow |C_{1}|^{2} = \sqrt{\frac{2 C_{2}}{\pi}}$$