Let $Q=n_1+n_2+n_3+1$,$\mathbf{s}=(n_1,n_2,n_3)$. Define $$ A(\mathbf{s}) =\int_{D}\prod_{n=1}^{Q-1}\frac{1}{1+x_n^2}\int_{1}^{\infty}\left(Q+\sum_{n=1}^{Q-1}x_n^2 +y^2\right)^{-1}\mathrm{d}y \text{d}x_i. $$ Where $D=[0,\infty]^{n_1}\times[0,1]^{n_2} \times[1,\infty]^{n_3}\subset\mathbb{R}^{Q-1}$, $\mathrm{d}x_i =\prod_{n=1}^{Q-1} \text{d}x_n$.
- Special case. For $\mathbf{s}=(0,0,n_3)$, we have $$ A(\mathbf{s}) =\frac{1}{Q}\left ( \frac{\pi}{4} \right )^Q. $$
- Question 1 Prove $$ \pi^{-Q}A(\mathbf{s})\in\mathbb{Q}. $$
My ultimate goal is to evaluate $A(\mathbf{s})$. Numerical calculations suggest that $$A(1,0,0)=\frac{\pi^2}{12} \quad A(0,1,0)=\frac{5\pi^2}{96}\quad A(0,0,1)=\frac{\pi^2}{32}$$
$$A(2,0,0)=\frac{\pi^3}{32} \quad A(1,1,0)=\frac{\pi^3}{80}$$
$$A(0,3,0)=\frac{93\pi^4}{35840} \qquad A(0,4,0)=\frac{193\pi^5}{322560}$$
Actually, if we explicit calculate the multiple integrals, it yields $$ \begin{aligned} &\int_{\sqrt{2} }^{\sqrt{3} } \frac{\arctan(y)}{(y^2-1)\sqrt{y^2-2} } \text{d}y =\frac{5\pi^2}{96},\\ &\frac{\pi}{6} \int_{\sqrt{3} }^{\sqrt{5} } \frac{\arctan(y)}{(y^2-1)\sqrt{y^2-2} } \text{d}y -\int_{2}^{\sqrt{5} } \frac{\displaystyle{\arctan (y)\arctan \sqrt{\frac{y^2-4}{y^2-2} } } }{(y^2-1)\sqrt{y^2-2} } \text{d}y=\frac{11\pi^3}{5760},\\ &\frac{\pi}{6} \int_{\sqrt{3} }^{\sqrt{5} } \frac{\arctan\left(y\sqrt{2+y^2} \right)}{(y^2-1)\sqrt{y^2-2} } \text{d}y -\int_{2}^{\sqrt{5} } \frac{\displaystyle{\arctan\left(y\sqrt{2+y^2}\right)\arctan \sqrt{\frac{y^2-4}{y^2-2} } } }{(y^2-1)\sqrt{y^2-2} } \text{d}y=\frac{\pi^3}{420}. \end{aligned} $$ Are there any other simple results? For $Q=4$, we may meet some 'troubles', such as this one: $$ \int_{0}^{1} \int_{1}^{\sqrt{2} } \frac{u\left(\pi-2\arctan\sqrt{u^4-1}-2\arctan \sqrt{\frac{u^2-1}{u^2+1} } \right) \arctan \sqrt{4+u^2+v^2} } {(1+v^2)\sqrt{1+u^2}(2+u^2) \sqrt{4+u^2+v^2} } \text{d}u\text{d}v. $$ I can hardly convert into a 'simple' form.
- Question 2. Can we evaluate a more general family of this kind of integrals? $$A(\alpha,\mathbf{s}) =\int_{D}\prod_{n=1}^{Q-1}\frac{1}{\alpha^2+x_n^2}\int_{1}^{\infty}\left(\alpha^2 Q+\sum_{n=1}^{Q-1}x_n^2 +y^2\right)^{-1}\mathrm{d}y \text{d}x_i.$$