Let $p \in \mathbb{Z}$ be prime. I am trying to determine all prime ideals $\mathfrak{q} \subset \mathbb{Z}[i]$ such that $\mathfrak{q} \cap \mathbb{Z} = p\mathbb{Z}$. I know that
$$ \{\text{prime ideals }\mathfrak{q} \subset \mathbb{Z}[i] \text{ s.t. } \mathfrak{q} \cap \mathbb{Z} = p\mathbb{Z}\} $$
is bijective to
$$ \{\text{prime ideals in } \mathbb{Z}[i] \otimes \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[X]/(X^2+1) \otimes \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z}[X]/(X^2+1)\}. $$
But how can explicitely determine all $\mathfrak{q}$?
- $(p)$ is a prime ideal if $p\equiv 3\pmod 4$ is a rational prime
- $(p)=(\pi_1)(\pi_2)$ with conjugate (and distinct) prime ideals $(\pi_1)$ and $(\pi_2)$ if $p\equiv 1\pmod 4$
- $(2)=(1+i)^2$ is the square of a prime ideal.
– Dietrich Burde Nov 13 '21 at 10:00