The cut rule is given as follows by these two wikipedia articles 1, 2:
$$\Gamma \vdash \Delta, A \qquad \Sigma, A \vdash \Pi \over \Gamma, \Sigma \vdash \Delta, \Pi$$
I have the following proof which converts to and from implications.
Starting with the two sequents,
\begin{align} & \Gamma \vdash \Delta, A \qquad & \Sigma, A \vdash \Pi \\ & \Gamma \rightarrow \Delta \vee A \qquad & \Sigma \wedge A \rightarrow \Pi \\ & \neg \Gamma \vee (\Delta \vee A) \qquad & \neg (\Sigma \wedge A) \vee \Pi \\ & \neg \Gamma \vee \Delta \vee A \qquad & \neg \Sigma \vee \neg A \vee \Pi \\ \end{align}
IIUC, the original sequents ($\Gamma \vdash \Delta, A$ and $\Sigma, A \vdash \Pi$) must each be true, so we must have
$$(\neg \Gamma \vee \Delta \vee A) \wedge (\neg \Sigma \vee \neg A \vee \Pi)$$
Doing some case work, $A$ must be true or $A$ must be false (i.e. $A \vee \neg A$):
- if $A$ is true, the above reduces to $\neg \Sigma \vee \Pi$
- if $A$ is false, the above reduces to $\neg \Gamma \vee \Delta$
\begin{align} A & \vee \neg A \\ (A \rightarrow \neg \Sigma \vee \Pi) & \wedge (\neg A \rightarrow \neg \Gamma \vee \Delta) \\ (\neg \Sigma \vee \Pi) & \vee (\neg \Gamma \vee \Delta) \\ \neg \Sigma \vee \neg \Gamma & \vee \Delta \vee \Pi \\ \end{align}
Which can be converted back into a sequent:
\begin{align} & \vdash \neg \Sigma, \neg \Gamma, \Delta, \Pi \\ \Sigma, \Gamma & \vdash \Delta, \Pi \\ \Gamma, \Sigma & \vdash \Delta, \Pi \end{align}
Thus proving the cut rule.
Would there have been a way to prove the cut rule without converting the sequents into implications?