Consider $\mathbb C^n$ as an inner product space with the standard inner product $\langle \cdot, \cdot \rangle$. For $v_1,\dots ,v_n\in \mathbb{C}^n$ define the $n\times n$ matrix $$A=(\langle v_i,v_j \rangle)_{i,j=1}^n.$$ Prove that $A$ is a non negative linear operator on $\mathbb C^n$. Does the converse hold? Prove or give a counterexample.
This link that Vincent pointed out in the comments seems to answer the non-negativity part. I am copying the necessary part of that answer here-
Let $x$ be the matrix $$ x=\begin{bmatrix}v_1&v_2&\cdots&v_n\end{bmatrix}. $$ Then $$ x^*x=\begin{bmatrix} v_1^*v_1&v_1^*v_2&\cdots&v_1^*v_n\\ v_2^*v_1&v_2^*v_2&\cdots&v_2^*v_n\\ \vdots & \vdots & \ddots & \vdots \\ v_n^*v_1&v_n^*v_2&\cdots&v_n^*v_n\\ \end{bmatrix} =\begin{bmatrix} \langle v_1, v_1 \rangle & \langle v_1, v_2\rangle & \cdots &\langle v_1, v_n \rangle \\ \langle v_2, v_1 \rangle & \langle v_2, v_2\rangle & \cdots &\langle v_2, v_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & \langle v_n, v_2\rangle & \cdots &\langle v_n, v_n \rangle \end{bmatrix}. $$ As $x^*x$ is positive-semidefinite, $\det x^*x\geq0$.
Also, the linearity of $A$ trivially follows from the linearity of matrix multiplications.
For the converse, I'm not sure how to proceed. I guess, the converse of the given statement is something like "if $A$ is a non-negative linear operator on $\mathbb C^n$, then it's entries are of the form $\langle v_i,v_j \rangle$ for $v_1,\dots ,v_n\in \mathbb{C}^n$". I feel like it's not true, but I can't produce any counterexamples. Please help me.