Let $\Omega$ be bounded area in $\mathbb{R}^{n}$, $u_{0} \in C(\bar{\Omega})$. If $u \in C_{t}^{1} C_{x}^{2}(\Omega \times(0,+\infty)) \cap C(\bar{\Omega} \times[0,+\infty))$ satisfies:
$$ \left\{\begin{array}{lc} \partial_{t} u-\Delta u=0, & (t, x) \in(0,+\infty) \times \Omega \\ u(0, x)=u_{0}(x), & x \in \Omega \\ u(t, x)=0, & (t, x) \in(0,+\infty) \times \partial \Omega \end{array}\right. $$
Then prove:
$$ \sup _{\Omega}|u(\cdot, t)| \leq C e^{-\mu t} \sup _{\Omega}\left|u_{0}\right|, \quad t>0 $$
Where $\mu, C$ are positive numbers dependent on $n$ and $\Omega$.
And I think the method should be 1. define a auxiliary function and 2. use this result, but I cannot figure it out.
And the dependency of $n$ and $\Omega$ seems strange to me. How should I use these two coeffients? Should I use something like Bochner's technique?