Prove that $n!=\sum_{r=0}^{n}\left((-1)^{r}\left({}^{{n}}\mathrm{C}_{r}\right)\left(n-r\right)^{n}\right)$
I have a method to solve this and here it is :
Number of onto functions from $A\rightarrow B$ where $n(A) = m , n(B) =n, $ where $m\ge n$ is given by
$f(m,n)=n^m -{}^{{n}}\mathrm{C}_{1}\left(n-1\right)^{m}+{}^{{n}}\mathrm{C}_{2}\left(n-2\right)^{m}-\cdots$
so now if $n(A)=n(B)=n$ we get number of onto functions $= f(n,n)$
But note that if $n(A)=n(B)=n$ then all the onto functions are also one - one functions and all one -one functions are onto. Now number of one-one function $=n!$
$\implies n! =f(n,n)=n^n -{}^{{n}}\mathrm{C}_{1}\left(n-1\right)^{n}+{}^{{n}}\mathrm{C}_{2}\left(n-2\right)^{n}-\cdots=\sum_{r=0}^{n}\left((-1)^{r}\left({}^{{n}}\mathrm{C}_{r}\right)\left(n-r\right)^{n}\right)$
$\boxed{\therefore n! =\sum_{r=0}^{n}\left((-1)^{r}\left({}^{{n}}\mathrm{C}_{r}\right)\left(n-r\right)^{n}\right)}$
But I want some another method to solve this, without using the number of functions logic.
Thanks for any help in advance !