Let $A \in \mathbb{C}^{n \times n}$ and for a given $x \in \mathbb{C}^n$, the square gain of $A$ is $\lVert A x \rVert^2 / \lVert x \rVert^2$ where the norm is the usual Euclidean norm. I want to calculate the average gain over all possible $x \in \mathbb{C}^n$. Obviously, the gain is independent from the "length" of $x$, so without losing generality we can assume $\lVert x \rVert = 1$.
Now we need a method to parameterize all $\lVert x \rVert = 1$. The first thing that comes to my mind is using the singular value decomposition of $A$. Let $A = U \Sigma V^*$ be the SVD of $A$, so
$$x = \sum_{i=1}^n \alpha_i v_i ~~~~\text{such that}~~~~ \sum_{i=1}^n \alpha_i^2 = 1 $$
characterize all possible vectors, where $U = [u_1 ~~ \dots ~~ u_n], \Sigma = \operatorname{diag}\{\sigma_i\}$ and $V = [v_1 ~~ \dots ~~ v_n]$.
Let's first consider $n=2$. We can select $\alpha_1 := \cos \theta$ and $\alpha_2 := \sin \theta$. So, the average gain can be calculated as
$$\begin{align*} \frac{1}{2 \pi} \int_0^{2\pi} \lVert A v_1 \cos \theta + A v_2 \sin \theta \rVert^2 d\theta &= \frac{1}{2 \pi} \int_0^{2\pi} \lVert \sigma_1 u_1 \cos \theta + \sigma_2 u_2 \sin \theta \rVert^2 d\theta \\ &= \frac{1}{2 \pi} \int_0^{2\pi} \left( \sigma_1^2 \cos^2 \theta + \sigma_2^2 \sin^2 \theta \right) d\theta \\ &= \frac{\sigma_1^2 + \sigma_2^2}{2} \end{align*}$$
This result makes intuitive sense since the average square gain is the average of minimum and maximum square gains. So, we can hypotesize that the average square gain is $\lVert A \rVert_F^2 / n$ where $\lVert \cdot \rVert_F$ is the Frobenius norm. Now we can test this idea for $n=3$ using spherical coordinates. So let $\alpha_1 := \cos \theta, \alpha_2 := \sin \theta \cos \phi, \alpha_3 := \sin \theta \sin \phi$. Using the same steps we get
$$\begin{align*} &\frac{1}{2 \pi^2} \int_0^{\pi} \int_0^{2\pi} \lVert A v_1 \cos \theta + A v_2 \sin \theta \cos \phi + A v_3 \sin \theta \sin \phi \rVert^2 d\phi d\theta \\ &~~~~~~~~= \frac{1}{2 \pi^2} \int_0^{\pi} \int_0^{2\pi} \left( \sigma_1^2 \cos^2 \theta + \sigma_2^2 \sin^2 \theta \cos^2 \phi + \sigma_3^2 \sin^2 \theta \sin^2 \phi \right) d\phi d\theta \\ &~~~~~~~~= \frac{2\sigma_1^2 + \sigma_2^2 + \sigma_3^2}{4} \end{align*}$$
which is not what we expected. Coming back to $n=2$ case, we could have also selected $\alpha_1 = t$ and $\alpha_2 = \sqrt{1-t^2}$ where $t \in [0,1]$. In this case, we get
$$ \int_0^1 \left(\sigma_2^2 + (\sigma_1^2 - \sigma_2^2) t^2 \right) dt = \frac{\sigma_1^2 + 2 \sigma_2^2}{3} $$
which is different from our first attempt.
So, why are the results are different? Is there a "correct" way of selecting the parameters to get a "nice" formula like $\lVert A \rVert_F^2 / n$?