Basically this: 1 = 0 with limits \begin{align} 1&=\lim_{n\to\infty} 1\\ &=\lim_{n\to\infty} \frac n n\\ &=\lim_{n\to\infty} \left(\underbrace{\frac1n + \frac1n + \cdots +\frac1n}_{n\text{ times}}\right)\\ &=\underbrace{\lim_{n\to\infty}\frac1n+\lim_{n\to\infty}\frac1n+\cdots+\lim_{n\to\infty}\frac1n}_{n\text{ times}}\\ &=\underbrace{0+0+\cdots+0}_{n\text{ times}}\\ &=0 \end{align}
Can anyone please help me find the mistake?
I know it's related to that "infinite sum" inside the brackets because it should be equal to 1, would that mean we're calculating a double limit?
Thanks!
btw, "veces" means times, and at the beginning it basically says: "what's the error"