The question is:
Evaluate the following limit without L'Hôpital, Taylor, differentiation (or integration): $$\lim_{x \to 0} \frac{\ln\left[\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\right]}{x^3}$$
This came up while I was trying to answer to this question. My own answere is there too.
I managed to cancel out most of the terms without L'Hôpital/Taylor/differentiation until I reached the above limit. Then I used a differentiation (not L'Hôpital) and finished with the definition of a derivative. The OP to that question claimed that even differentiation is not allowed. He believes it could be solvable only using such methods that can be derived (algebraically) from something like $\lim_{x\to0} \frac{\sin x}{x}$ or $\lim_{n\to\infty} \left(1+\frac1n\right)^n$, etc. I think that a sandiwch theorem will be fine too.
Using Taylor seriese or L'Hôpital's theorem, the above limit is trivial to solve. And the below is how I solved it using differentiation (which was not allowed either). I am wondering if there's a way to evaluate it even without differentiation, so I am posting here. Thanks.
My method: \begin{align} \lim_{x \to 0} \frac{\ln\left[\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\right]}{x^3} &=\lim_{x \to 0} \frac{\ln\left((1-3x)(1+x)^3\right)-\ln\left((1+3x)(1-x)^3\right)}{x^3}\\ &=\lim_{x \to 0} \frac{\ln(1-6x^2-8x^3-3x^4)-\ln(1-6x^2+8x^3-3x^4)}{x^3}\\ &=\lim_{x \to 0} \frac{\ln(1-6x^2-8x^3)-\ln(1-6x^2+8x^3)}{x^3}\\ &=\lim_{h \to 0} \frac{\ln(1-6h^{2/3}-8h)-\ln(1-6h^{2/3}+8h)}{h}\\ &=\left.\left\{\ln(1-6x^{2/3}-8x)-\ln(1-6x^{2/3}+8x)\right\}'\right|_{x=0}\\ &=\left.\left(\frac{-\frac4{\sqrt[3]x}-8}{1-6x^{2/3}-8x}-\frac{-\frac4{\sqrt[3]x}+8}{1-6x^{2/3}+8x}\right)\right|_{x=0}\\ &=\left.\frac{-16+32x^{2/3}}{(1-6x^{2/3}-8x)(1-6x^{2/3}+8x)}\right|_{x=0}\\ &=-16\\ \end{align}
Here's the alternative answer that I think may be acceptable. It only uses: $$\frac1{1+x}=1-x+x^2-x^3+\cdots$$ and $$\lim_{x\to0}\frac{\ln(1+x)}x=1$$ that comes from $$\lim_{n\to\infty}\left(1+\frac1n\right)^n=e$$ So the method-2 is: \begin{align} &\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\\ =&\dfrac{(1-3x)(1+3x+3x^2+x^3)}{(1+3x)\left(1-x(3+3x-x^2)\right)}\\ =&(1-3x)(1+3x+3x^2+x^3)\\ \times&(1-3x+9x^2-27x^3+\cdots)\\ \times&\left(1+x(3+3x-x^2)+x^2(3+3x-x^2)^2+x^3(3+3x-x^2)^3+\cdots\right)\\ =&(1-3x)(1+3x+3x^2+x^3)(1-3x+9x^2-27x^3+\cdots)(1+3x+6x^2+10x^3+\cdots)\\ =&1-16x^3+O(x^4) \end{align} Therefore, \begin{align} \lim_{x \to 0} \frac{\ln\left[\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\right]}{x^3}&=\lim_{x \to 0} \frac{\ln\left(1-16x^3+O(x^4)\right)}{x^3}\\ &=-16\lim_{x \to 0} \frac{\ln\left(1-16x^3\right)}{-16x^3}\\ &=-16\lim_{x\to0}\frac{\ln(1+x)}x\\ &=-16 \end{align}
Using the Essaidi's answer below, here's the solution that will (I believe) satisfy the requirement of "using only knowledge learned before Calculus" (this is the updated compilation of the requirement to the original problem that I could understand from the OOP's comment to other person below the original question).
\begin{align} &\lim_{x \to 0} \frac{\ln\left[\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\right]}{x^3}\\ &=\lim_{x \to 0} \frac{\ln\left[1+\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}-1\right]}{\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}-1}\frac{\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}-1}{x^3}\\ &=\lim_{y \to 0}\frac{\ln(1+y)}{y}\cdot\lim_{x \to 0}\frac{\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}-1}{x^3}\\ &=1\cdot\lim_{x \to 0}\frac{(1-3x)(1+x)^3-(1+3x)(1-x)^3}{x^3(1+3x)(1-x)^3}\\ &=\lim_{x \to 0}\frac{-16x^3}{x^3}\\ &=-16 \end{align}