I was wondering whether this limit converges to zero: $$ \lim_{n \to \infty}\frac{\sum_{i=0}^{n}{\sqrt{i}}}{n^2}=0 $$ And i'm pretty sure it is.
First, by intuition. I know that $\sum_{i=0}^n{i} = \frac{n(n+1)}{2}$ ~ $O(n^2)$, so i guess that $\sum_{i=0}^n{\sqrt{i}}$ is "less powerful", but i don't really know how much "lesser"
So, the thing that really interest me was: what is the "cardinality" of $\sum_{i=0}^{\infty}{\sqrt{i}} \;? \quad$ Is it "equal ~" to $O(n)$? (I'm not sure i translated the words correctly. Does 'cardinality' is the right word for my description? I'm not familiar with these words in english, sorry. hope you understood what i meant).
Here is my thought:
$ {\sum_{i=0}^{n}{\sqrt{i}}} = {\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n-1}+\sqrt{n}} = {\sqrt{n} \big( \frac{\sqrt{1}}{\sqrt{n}} +\frac{\sqrt{2}}{\sqrt{2}} +...+ \frac{\sqrt{n-1}}{\sqrt{n}} + \frac{\sqrt{n}}{\sqrt{n}} \big)} = {{\sqrt{n} \big( \sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} +...+ \sqrt{\frac{n-1}{n}} + \sqrt{\frac{n}{n}} \big)}} $
and so:
$$ \lim_{n \to \infty} \frac{\sum_{i=0}^{n}{\sqrt{i}}}{n^2} = \lim_{n \to \infty} \frac{{\sqrt{n} \big( \sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} +...+ \sqrt{\frac{n-1}{n}} + \sqrt{\frac{n}{n}} \big)}}{n^2} \overbrace{<}^{(*)} \lim_{n \to \infty} \frac{{\sqrt{n} \big( \sqrt{\frac{n}{n}} + \sqrt{\frac{n}{n}} +...+ \sqrt{\frac{n}{n}} + \sqrt{\frac{n}{n}} \big)}}{n^2} = \lim_{n \to \infty} \frac{{\sqrt{n} \big( \overbrace{1 + 1 +...+ 1 + 1}^{n \, times} \big)}}{n^2} = \lim_{n \to \infty} \frac{ \sqrt{n} *n }{n^2} = \lim_{n \to \infty} \frac{ \sqrt{n} }{n} = \lim_{n \to \infty} \frac{1}{ \sqrt{n} } = 0 $$
But my enlargement in $(*)$ above was too big.
I was wondering if you can suggest me some better way :)
so, according to your explanation, can we conclude that $\sum_{i=0}^n \sqrt i$ ~ $O(n^{1.5})$ ?
– ryden Jan 15 '22 at 17:42