Let $m,n\in \mathbb N$, what is $\gcd(5^n+7^n, 5^m+7^m)$?
Since the case $m=n$ is trivial, we may assume $m>n$, hence by the Euclidean algorithm we get $m=nq+r$. $$d=\gcd(5^n+7^n, 5^m+7^m) =(5^n+7^n, 5^m+7^m-5^{m-n}(5^n+7^n))$$ $$= (5^n+7^n,7^n(7^{m-n}-5^{m-n}))=(5^n+7^n,7^{m-n}-5^{m-n}).$$ Repeating this $q$ times we get $$d= (5^n+7^n,7^{r}-5^{r}) $$ What’s next ?