As mentioned in my post, I started to investigate the integral $$ I(m,n,a)=\int_{0}^{\infty} \frac{d x}{\left(x^{n}+a\right)^{m}}, $$ where $m$ and $n$ are natural number and $a$ is positive.
First of all, let’s start with the ‘simple’ case, $$ I(1, n, 1)=\int_{0}^{\infty} \frac{d x}{x^{n}+1}. $$
However, $\displaystyle \int_{0}^{\infty} \frac{d x}{x^{n}+1}$ is itself not simple. I was forced to use a ready made formula
$$ \int_{0}^{\infty} \frac{d x}{x^{n}+1}=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right). $$
which I can’t prove by elementary method yet. Please tell me if you have any.
Then $$I(m,n,a) =\int_{0}^{\infty} \frac{\sqrt[n]{a} d\left(\frac{x}{\sqrt[n]{a}}\right)}{a\left[\left(\frac{x}{\sqrt[n]{a}}\right)^{n}+1\right]} =\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right) a^{-\frac{n-1}{n}}$$
Now differentiating $I(1, n, a)$ w.r.t. $a$ by $(n-1)$ times yields $$ \begin{aligned} \int_{0}^{\infty} \frac{(-1)^{m-1}(m-1) ! d x}{\left(x^{n}+a\right)^{m}}=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right)\left(-\frac{n-1}{n}\right)\left(-\frac{2 n-1}{n}\right)\left(-\frac{3 n-1}{n}\right) \cdots\left(-\frac{m n-n-1}{n}\right) a^{-\frac{m n-1}{n}} \end{aligned} $$
Rearranging and simplifying yields $$ \boxed{\int_{0}^{\infty} \frac{d x}{\left(x^{n}+a\right)^{m}}=\frac{\pi \csc \left(\frac{\pi}{n}\right)}{(m-1) ! n^{m} a^{\frac{m n-1}{n}} }\prod_{k=1}^{m-1}(k n-1)} $$
Putting $a=1$ gives our formula $$ \boxed{\int_{0}^{\infty} \frac{d x}{\left(x^{n}+1\right)^{m}}=\frac{\pi \csc \left(\frac{\pi}{n}\right)}{(m-1) ! n^{m} }\prod_{k=1}^{m-1}(k n-1)} $$
For verification, $$ \begin{aligned} \int_{0}^{\infty} \frac{d x}{\left(x^{3}+1\right)^{10}} =\frac{\pi \csc \left(\frac{\pi}{3}\right)}{9 ! 3^{10}} \cdot 2 \cdot 5 \cdot 8 \cdot 11 \cdot 14 \cdot 17 \cdot 20 \cdot 23 \cdot 26 =\frac{1118260 \pi}{4782969 \sqrt{3}}, \end{aligned} $$ which is checked by Wolframalpha $$\begin{aligned} \int_{0}^{\infty} \frac{d x}{\left(x^{12}+1\right)^{5}}&=\frac{\pi \csc \left(\frac{\pi}{12}\right)}{4 ! 12^{5}} \cdot 11 \cdot 23 \cdot 35 \cdot 47\\ &=\frac{416185 \pi(\sqrt{6}+\sqrt{2})}{5971968} \\ &\doteq 0.845906950943631, \end{aligned} $$ which is checked by Wolframalpha
My question is whether we can prove the formula without using $\int_{0}^{\infty} \frac{d x}{x^{n}+1}=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right).$