How do I prove that $$ \lim_{ \varepsilon \rightarrow 0^+ } \int_{|x| \geq \varepsilon} \frac{ \varphi(x) }{x}dx = - \int_{-\infty}^\infty \phi'(x) \ln(|x|)dx $$ for all $ \varphi \in C_0^{\infty} (\mathbb{R})?$
I was starting as follows
$$ \lim_{ \varepsilon \rightarrow 0^+ } \int_{|x| \geq \varepsilon} \frac{ \varphi(x) }{x}dx = \lim_{ \varepsilon \rightarrow 0^+ } \left( \int_{\varepsilon}^{\infty} +\int_{-\infty}^{- \varepsilon} \right) \frac{ \varphi(x) }{x}dx $$ $$ = \lim_{ \varepsilon \rightarrow 0^+ } \left( \varphi(x)\ln(x)\big|_{\varepsilon}^{\infty} + \varphi(x)\ln(x)\big|_{-\infty}^{- \varepsilon} + \left( \int_{\varepsilon}^{\infty} +\int_{-\infty}^{- \varepsilon} \right) \varphi'(x) \ln(x) dx \right) $$ $$= \lim_{ \varepsilon \rightarrow 0^+ } \left(- \varphi(\varepsilon)\ln(\varepsilon) + \varphi(-\varepsilon)\ln(-\varepsilon) + \left( \int_{\varepsilon}^{\infty} +\int_{-\infty}^{- \varepsilon} \right) \varphi'(x) \ln(x) dx \right) $$ but here I am stuck. Does anyone have any hint on how to proceed?
Thanks