I was making some limits using Maclaurin’s series and one of those was:
$$\lim _{x\to 0} \frac{e^x-\ln\left(1+x\right)-1}{x^2}$$
While this limit can be solved using Maclaurin’s series or L’Hospital’s rule, I want to find out a solution without using these methods—take for example, using just the rules of algebra of limits or the squeeze theorem. I am stuck with finding a solution. Any ideas?