A Euclid's formula variation lets us easily see what the differences are that go into $\dfrac{B-A}{C-A}\space$ and how $\space B-A>0 \space$ requires that $\space 2k^2>m.\space$
\begin{align*}
A&=\bigg(\big(2n-1+k\big)^2-k^2\bigg)\\
&\qquad\qquad=(2n-1)^2+2(2n-1)k\\
B&=\quad 2\big(2n-1+k\big)k\\
&\qquad\qquad\qquad\qquad= 2(2n-1)k+2k^2\\
C&=\bigg(\big(2n-1+k\big)^2+k^2\bigg)\\
&\qquad\qquad=(2n-1)^2+2(2n-1)k+2k^2
\end{align*}
Examples, using this formula, are
\begin{align*}
&(n,2k^2)=(1,2)\quad F(n,k)=F(1,1)= (3,4,5)\\
&(n,2k^2)=(2,18)\quad F(n,k)=F(2,3)= (27,36,45)\\
&(n,2k^2)=(3,32)\quad F(n,k)=F(3,4)= (65,72,97)\\
&(n,2k^2)=(4,50)\quad F(n,k)=F(4,5)= (119,120,169)\\
\end{align*}
The formula produces non-trivial triples for all pairs of natural numbers.
\begin{equation}
n,k\in\mathbb{N}
\implies\\
A=\big\{3,5,7,\cdots\big\}\\
B=\big\{4,8,12,\cdots\big\}\\
\qquad C\subset\big\{5,9,13,\cdots,4x+1\big\}
\end{equation}
$
(B-A)=2k^2-(2n-1)^2\implies \\
(B-A)\in\big\{1,7,17,23,31,\cdots\}\implies \\
(B-A)\equiv\pm 1 \pmod 8
$
$
(C-A)=2k^2\implies\\
(C-A)\in\big\{2,8,18,32,50,\cdots\big\}
$
$\dfrac{B-A}{C-A}
=\dfrac{2k^2-(2n -1)^2}{2k^2}
=1-\dfrac{(2n-1)^2}{2k^2}$
$(B>A)\implies 2k^2 \ge (2n-1)^2\\
\implies k \ge n\\
\implies 0 < \dfrac{B-A}{C-A} < 1\\$
Note that $\space\ 2k^2 \ge (2n-1)^2\space$
is not sufficient for $\space B>A\space $ as in:
$\qquad\qquad
(n,2k^2)=(2,8)\quad F(n,k)=F(2,2)= (21,20,29)\\
$
We can see, with arbitrarily skinny or fat Pythagorean triples like
$$F(1,5000)=(10001,50010000,50010001)\quad (C-B)=1\\
\text{ or } \\
F(23661,33461)=(5406093003,5406093004,7645370045)
\\ (B-A)=1)$$
from this formula, there are infinite triples where
$\space \dfrac{B-A}{C-A}\space $
is equal to or comes arbitrarily close to any number in $\space[0,1].$
I developed a formula which generates only triples where $GCD(A,B,C)$ is an odd square. It skips the trivials, the doubles, the even square multiples, and the doubles of these that Euclid's formula generates. Perhaps it might help with this problem. For example, it shows how $\dfrac{B-A}{C-A} =1-\dfrac{(2n-1)^2}{2k^2}$ where $\space n\space$ is a set of triples and $\space k\space $ is the number of the triple in that set. If $2k^2>(2n-1)^2,\space$ then $B>A.$
– poetasis Jan 28 '22 at 23:27